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Abstract

We derive the effective hamiltonian for a charge-Josephson qubit in a circuit with no use of phenomenological argu-
ments, showing how energy renormalizations induced by the environment appear with no need of phenomenological
counterterms. This analysis may be important for multiqubit systems and geometric quantum computation.
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Josephson junction based nanocircuits have been
proposed for the implementation of quantum gates[1]
and quantum coherent behavior has been recently ob-
served[2] in charge-based devices (charging energy Ec
larger than the Josephson energy Ej). Decoherence
in these devices is due to several sources[l], as fluc-
tuations of the circuit, backaction of the measuring
apparatus or noise due to background charges in the
substrate[3]. Fluctuations of the circuit are modeled
by coupling the system to an environment of harmonic
oscillators[4] which mimics the external impedences
(see Fig.1). An effective hamiltonian H.yy is consid-
ered, which represents a spin-boson model (or a mul-
tistate version), the central variable being the charge
Q@ in the island and the environment being fixed in a
phenomenological way[1]. The environment produces
decoherence and energy shifts, which may in princi-
ple be large. In dissipative quantum mechanics shifts
are usually treated either by introducing countert-
erms[4] or by writing Heys in terms of renormalized
quantities[4]. We present here a model for the elec-
tromagnetic environment and we derive a multistate
Hcss using no phenomenological argument. This has
two motivations. First in principle bare circuit param-
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Fig. 1. The Cooper pair box in an electromagnetic environment.
Fluctuations are due to the impedence Z(w), which is modeled
by a suitable infinite LC transmission line

eters are well defined and tunable, so we want to know
precisely how this reflects on H. Second the role of in-
duced shifts, which is minor in the devices of Refs.[2],
may be crucial in various situations (e.g. geometric
quantum computation[5], dynamics of registers and
error correction devices).

We consider the Cooper pair box[1] of Fig.1. The ex-
ternal impedance is modeled by a suitable LC trans-
mission line and the Lagrangian of the system is
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where qﬁ are voltage drops and the Josephson energy is
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Vi(¢1) = —Ejcos(2e¢1/h). The environment is fully
specified by the elements C, and L,. The circuit is
introduced by the constraint q51 + ég + Za q.ﬁa = Va,
which allows to eliminate one variable and to write
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where 1 = ka¢a — kK191, Cxs = Z Ci,C. = C102/Cx,
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We next diagonalize L, and obtain the form
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In order to determine the parameters, notice that L
describes a series C. — Z circuit, with Zﬁ dptp =
Za q.ﬁa = Vz. By comparing the linear response with
the known classical dynamics of Vz (as explained in

Refs.[4]) we determine the spectral density (w > 0)
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We stress that Ly is quadratic therefore the procedure
above is an exact way to perform the diagonalization,
which uses classical circuit theory as a tool. It’s validity
for quantum harmonic oscillators is guaranteed by the
Ehrenfest theorem.

We get rid of the ® in the potential term in Eq.(1),
we perform a (canonical) transformation x = n — ko ®
and obtain the total Lagrangian L = L, + L, where
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One can verify that the variable canonically conjugated
to x is the charge @ in the island. The Hamiltonian
corresponding to L reads
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where p, are conjugated to x, and we used the relation
D d% /ma = 1/Ce. The system variable Q is coupled
with the momenta p, of the environment.

A further canonical transformation of the environ-
ment (Za = pa/(Mawa), Pa = —MawaZa) yields a
hamiltonian where @ is coupled with the coordinates
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Heyy =

where ¢, = daws and we introduce the spectral density
Jw) =7, 0w —wa)ch/(2mawa) = w? J'(w).

If we isolate the dc bias Vi (t) = V, + 6Vz(t) and
redefine o + caCe Vﬁ/(mawi) — T, we finally obtain
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Notice that the capacitance C; (and not Cs) enters
the Q2 term and if we put ¢, = 0 we do not obtain the
Cooper pair box hamiltonian. This is correct because
the environment represents global fluctuations of the
circuit, not only of Z. Notice that a static @) shifts the
equilibrium positions of the oscillators and also pro-
duces a @Q-dependent shift of the zeroes of their en-
ergies. We can single out the corresponding term and
focus on it. In the situations described in Refs.[4] this
term should be canceled by introducing a counterterm,
because we have informations only about renormalized
effective parameters of the model. In our case we have
information about the bare parameters therefore there
is no reason to cancel the Q-dependent shift of the zero
of the oscillator energies. It can be reabsorbed in the
charging energy if we write the oscillator hamiltonian
using the shifted values z, + camgQ/(man), which
produces the extra term —r3Q? Za c2/(2maw?) =
-Q?/(2C,) and
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which reduces to the non dissipative form by letting
co = 0. This is a convenient starting point for a weak
coupling analysis also because a static shift in the equi-
librium points of the oscillators has no effect even if it
is large.
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