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Abstract

We derive the effective hamiltonian for a charge-Josephson qubit in a circuit with no use of phenomenological argu-
ments, showing how energy renormalizations induced by the environment appear with no need of phenomenological
counterterms. This analysis may be important for multiqubit systems and geometric quantum computation.
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Josephson junction based nanocircuits have been
proposed for the implementation of quantum gates[1]
and quantum coherent behavior has been recently ob-
served[2] in charge-based devices (charging energy EC

larger than the Josephson energy EJ ). Decoherence
in these devices is due to several sources[1], as fluc-
tuations of the circuit, backaction of the measuring
apparatus or noise due to background charges in the
substrate[3]. Fluctuations of the circuit are modeled
by coupling the system to an environment of harmonic
oscillators[4] which mimics the external impedences
(see Fig.1). An effective hamiltonian Heff is consid-
ered, which represents a spin-boson model (or a mul-
tistate version), the central variable being the charge
Q in the island and the environment being fixed in a
phenomenological way[1]. The environment produces
decoherence and energy shifts, which may in princi-
ple be large. In dissipative quantum mechanics shifts
are usually treated either by introducing countert-
erms[4] or by writing Heff in terms of renormalized
quantities[4]. We present here a model for the elec-
tromagnetic environment and we derive a multistate
Heff using no phenomenological argument. This has
two motivations. First in principle bare circuit param-
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Fig. 1. The Cooper pair box in an electromagnetic environment.

Fluctuations are due to the impedence Z(ω), which is modeled

by a suitable infinite LC transmission line

eters are well defined and tunable, so we want to know
precisely how this reflects on H. Second the role of in-
duced shifts, which is minor in the devices of Refs.[2],
may be crucial in various situations (e.g. geometric
quantum computation[5], dynamics of registers and
error correction devices).

We consider the Cooper pair box[1] of Fig.1. The ex-
ternal impedance is modeled by a suitable LC trans-
mission line and the Lagrangian of the system is

L =
∑
i=1,2

Ciφ̇
2
i

2
− VJ (φ1) +

∑
α

[Cαφ̇2
α

2
− φ2

α

2Lα

]

where φ̇ are voltage drops and the Josephson energy is
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VJ (φ1) = −EJ cos(2eφ1/h̄). The environment is fully
specified by the elements Cα and Lα. The circuit is
introduced by the constraint φ̇1 + φ̇2 +

∑
α

φ̇α = Vx,
which allows to eliminate one variable and to write

L =
CΣ η̇2

2
− VJ

(
2e(κ2Φ − η)/h̄

)
+ Lb (1)

Lb =
1

2
Ce Φ̇2 +

∑
α

[Cα

2
φ̇2

α − 1

2Lα
φ2

α

]

where η = κ2φ2 − κ1φ1, CΣ =
∑

i
Ci, Ce = C1C2/CΣ,

κ1,2 = C1,2/CΣ, and Φ̇ = Vx − ∑
α

φ̇α.
We next diagonalize Lb and obtain the form

Lb =
∑

α

[
mα

2
ẋ2

α − mαω2
α

2
x2

α

]
− CeVx

∑
α

dαẋα

In order to determine the parameters, notice that Lb

describes a series Ce − Z circuit, with
∑

β
dβ ẋβ =∑

α
φ̇α = VZ . By comparing the linear response with

the known classical dynamics of VZ (as explained in
Refs.[4]) we determine the spectral density (ω > 0)

J ′(ω) =
∑

α

πd2
αδ(ω − ωα)

2mαωα
= Re

[
Z(ω)/ω

1 + iωZ(ω)Ce

]

We stress that Lb is quadratic therefore the procedure
above is an exact way to perform the diagonalization,
which uses classical circuit theory as a tool. It’s validity
for quantum harmonic oscillators is guaranteed by the
Ehrenfest theorem.

We get rid of the Φ in the potential term in Eq.(1),
we perform a (canonical) transformation χ = η − κ2Φ
and obtain the total Lagrangian L = La + Lb where

La =
CΣ

2

(
χ̇ + κ2Vx − κ2

∑
α

dαẋα

)2
+ VJ (2eχ/h̄)

One can verify that the variable canonically conjugated
to χ is the charge Q in the island. The Hamiltonian
corresponding to L reads

H =
Q2

2C1
+ Q κ2

∑
α

dα

mα
pα − EJ cos

(
2e

h̄
χ
)

+
∑

α

[
p2

α

mα
+

1

2
ω2

α x2
α

]
+ CeVx

∑
α

dα

mα
pα

where pα are conjugated to xα and we used the relation∑
α

d2
α/mα = 1/Ce. The system variable Q is coupled

with the momenta pα of the environment.
A further canonical transformation of the environ-

ment (x̃α = pα/(mαωα), p̃α = −mαωαxα) yields a
hamiltonian where Q is coupled with the coordinates

Heff =
Q2

2C1
+ VJ

(2e

h̄
χ
)

+ κ2Q
∑

α

cα x̃α

+
∑

α

[
p̃2

α

2mα
+

mαω2
α

2
x̃2

α

]
+ CeVx

∑
α

cα x̃α

where cα = dαωα and we introduce the spectral density
J(ω) = π

∑
α

δ(ω − ωα)c2
α/(2mαωα) = ω2 J ′(ω).

If we isolate the dc bias Vx(t) = Vx + δVx(t) and
redefine x̃α + cαCeVx/(mαω2

α) → xα we finally obtain

Heff =
Q2

2C1
− κ2VxQ + VJ

(2e

h̄
χ
)

+ Qκ2

∑
α

cαxα

+
∑

α

[
p2

α

2mα
+

mαω2
α

2
x2

α

]
+ CeδVx(t)

∑
α

cαxα

Notice that the capacitance C1 (and not CΣ) enters
the Q2 term and if we put cα = 0 we do not obtain the
Cooper pair box hamiltonian. This is correct because
the environment represents global fluctuations of the
circuit, not only of Z. Notice that a static Q shifts the
equilibrium positions of the oscillators and also pro-
duces a Q-dependent shift of the zeroes of their en-
ergies. We can single out the corresponding term and
focus on it. In the situations described in Refs.[4] this
term should be canceled by introducing a counterterm,
because we have informations only about renormalized
effective parameters of the model. In our case we have
information about the bare parameters therefore there
is no reason to cancel the Q-dependent shift of the zero
of the oscillator energies. It can be reabsorbed in the
charging energy if we write the oscillator hamiltonian
using the shifted values xα + cακ2Q/(mαω2), which
produces the extra term −κ2

2Q
2
∑

α
c2

α/(2mαω2
α) =

−Q2/(2Ce) and

Heff =
Q2

2CΣ
− κ2VxQ + VJ

(2eχ

h̄

)
+ CeδVx

∑
α

cαxα

+
∑

α

[
p2

α

2mα
+

mαω2
α

2

(
xα +

cακ2Q

mαω2

)2]
(2)

which reduces to the non dissipative form by letting
cα = 0. This is a convenient starting point for a weak
coupling analysis also because a static shift in the equi-
librium points of the oscillators has no effect even if it
is large.
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