

A new IR excitation in semiconducting $\text{Ba}_{1-x}\text{K}_x\text{BiO}_3$ single crystals

Javed Ahmad ^{a,1}, Taichiro Nishio ^a, Hiromoto Uwe ^a

^a Institute of Materials Science, University of Tsukuba, 305-8573 Japan

Abstract

We report optical reflectivity measurements on $\text{Ba}_{1-x}\text{K}_x\text{BiO}_3$ ($x = 0, 0.15$) single crystals in the frequency range $70 - 30000 \text{ cm}^{-1}$ and at different temperatures in an attempt to understand the transport mechanism in the semiconducting state before it undergoes semiconductor-metal transition. For $x = 0.15$, at 400 K, we find a hump in reflectivity at $\approx 1280 \text{ cm}^{-1}$. N_{eff} of total IR transition shifts towards low frequency as temperature increases above 300 K. We suggest the presence of new and thermally excited states in the peierls band gap and the possible new IR excitations.

Key words: $\text{Ba}_{1-x}\text{K}_x\text{BiO}_3$; optical reflectivity; CDW; spectral weight

$\text{Ba}_{1-x}\text{K}_x\text{BiO}_3$ (BKBO) possess exotic semiconducting state below $x = 0.3$. The experimentally observed frozen breathing-type lattice distortions [1] led to a suggestion that the undoped BaBiO_3 , which has one electron per Bi atom, is made semiconducting by a charge density wave (CDW) instability that opens a gap on the Fermi level, splitting the half filled conduction band into two subbands: a filled lower Bi^{3+} subband and an empty upper Bi^{5+} one [2].

We report temperature dependent optical reflectivity of BKBO for $x = 0.15$, at potassium doping well below the one where semiconductor to metal transition takes place and compare the results with that of undoped BaBiO_3 .

Fig. 1 shows the reflectivity spectra of BKBO at different temperatures. The results at 300 K are consistent with previous room temperature results [3]. For $x = 0.15$, reflectivity at 400 K shows a hump that reaches its maximum at frequency $\approx 1280 \text{ cm}^{-1}$. The reflectivity remains high up to frequency $\approx 3800 \text{ cm}^{-1}$. Thereafter, it crosses the one at lower temperature followed by a reflection band (hereafter called IR band) appears at $\approx 12900 \text{ cm}^{-1}$ (1.6 eV). For comparison, fig. 1-a

shows reflectivity of $x = 0$ sample where we find no 1280 cm^{-1} hump and an IR band appears at $\approx 15400 \text{ cm}^{-1}$ (1.9 eV).

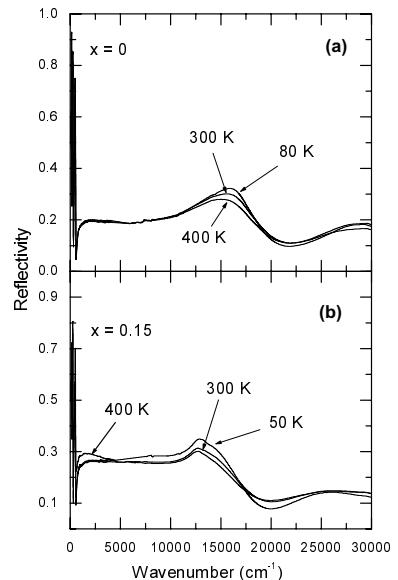


Fig. 1. Reflectivity vs frequency spectra of BKBO for (a) $x = 0$ and (b) $x = 0.15$ at different temperatures. Low frequency region shows phonons.

¹ On leave from: Department of Physics, Bahauddin Zakariya University, Multan 60800, Pakistan. E-mail: javed_okara@yahoo.com

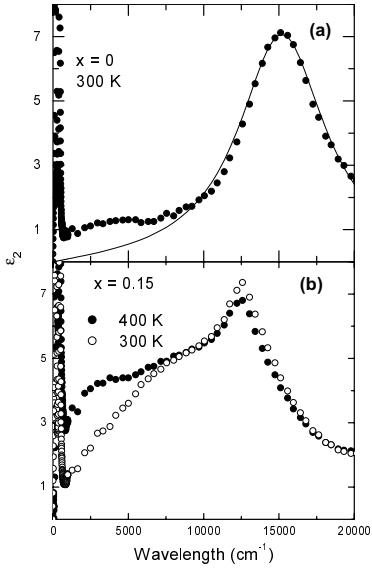


Fig. 2. ϵ_2 of BKBO for (a) $x = 0$ at 300 K (filled dots). Solid line is the best fit obtained, using Lorentz oscillator model by excluding Drude and high energy terms. (b) $x = 0.15$ at 300 K (open dots) and 400 K (filled dots). Note the difference in shape of ϵ_2 .

Fig. 2 shows ϵ_2 of both samples obtained by K. K. analysis of reflectivity spectra. For $x = 0$, a single peak observed in ϵ_2 at $\approx 15400 \text{ cm}^{-1}$ (at IR band frequency) is extensively reported and is attributed to a transition of Bi 6s electrons from a filled Bi^{3+} subband to an empty Bi^{5+} one. However, for $x = 0.15$, the behavior of ϵ_2 shown in fig. 2-b is unusual. At 300 K, $\epsilon_2 \approx 1$ at $\approx 1000 \text{ cm}^{-1}$ increases to ≈ 3.5 at $\approx 4500 \text{ cm}^{-1}$ followed by relatively slow increase to ≈ 5 at $\approx 9000 \text{ cm}^{-1}$. A peak corresponding to IR band appears at $\approx 12900 \text{ cm}^{-1}$, at frequency lower than that in case of undoped sample. On comparison, for $x = 0$, $\epsilon_2 \approx 1$ at $\approx 1000 \text{ cm}^{-1}$ remains almost unchanged up to $\approx 8000 \text{ cm}^{-1}$.

For $x = 0.15$, we observe a significant temperature dependence of ϵ_2 as shown in fig. 2-b. At 400 K, $\epsilon_2 \approx 3$ (≈ 1 at 300 K) at $\approx 1000 \text{ cm}^{-1}$, at first, rises sharply, followed by a slow increase, and remains larger than that at 300 K up to $\approx 9000 \text{ cm}^{-1}$. The IR band appears at the same energy but peak intensity lowers. This seems as if, on increasing temperature, ϵ_2 at frequency of the IR band decreases and is transferred to the lower frequency region. This indicates the presence of more IR peaks at frequency below the one corresponding to IR band.

This speculation is strongly supported by spectral weight calculation of total IR transition (N_{eff}) that gives the effective number of carriers per Bi atom contributing to the infrared transition is shown in fig. 3. We notice that N_{eff} of $x = 0$ sample does not show appreciable temperature dependence. However, signif-

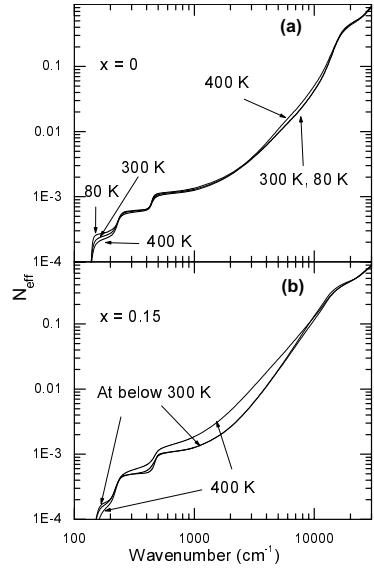


Fig. 3. Spectral weight (N_{eff}) of (a) $x = 0$ and (b) $x = 0.15$, obtained from integration of the ϵ_2 using finite energy f-sum rule.

icant temperature dependence of N_{eff} is seen in $x = 0.15$ sample (fig. 3-b). At 400 K, N_{eff} remains large to much lower frequency $\approx 250 \text{ cm}^{-1}$ ($\approx 12000 \text{ cm}^{-1}$ in $x = 0$) where it crosses the one at lower temperature. This indicates that in potassium doped sample N_{eff} shifts towards lower frequency region as temperature increases.

N_{eff} seems to be transferred to the peaks present at lower frequency. These peaks correspond to some new excitations among the bound states created by hole doping in CDW gap. Recently, Bischofs et al [4] presented a model for lightly doped BaBiO_3 where they suggested the formation of such bound states inside the peierls gap as a result of hole doping. Also at higher temperature, some carriers are thermally excited to some higher energy states. Excitation from these thermally excited band to either some other allowed states inside peierls gap or empty Bi^{5+} band may be the possible reason for the rise of ϵ_2 with increasing temperature.

References

- [1] D. E. Cox, A. W. Sleight, *Acta Crystallogra Sect. B* **35** (1979) 1.
- [2] L. F. Mathttheiss, D. R. Hamann, *Phys. Rev. B* **28** (1983) 4227.
- [3] T. Nishio, H. Uwe, (Unpublished).
- [4] I. B. Bischofs, V. N. Kostur, P. B. Allen, *Phys. Rev. B* **65** (2002) 115112.