

Peculiar Evolution of the c-Axis Charge Transport in $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$ Single Crystals from Antiferromagnetic Insulator to Superconducting Regime

Seiki Komiya ^{a,1}, Yoichi Ando ^a, X.F. Sun ^a, A.N. Lavrov ^a

^a*Central Research Institute of Electric Power Industry, Komae, Tokyo 201-8511, Japan*

Abstract

The in-plane and the out-of-plane resistivities (ρ_{ab} and ρ_c) are measured in high-quality $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$ single crystals in the lightly- to moderately-doped region ($x = 0.01 - 0.10$). It is found that the resistivity ratio ρ_c/ρ_{ab} at moderate temperatures (100–300 K) is almost completely independent of doping for $0.01 \leq x \leq 0.05$. It is discussed that this striking doping-independence of ρ_c/ρ_{ab} is consistent with the idea that charges form a self-organized network of hole-rich paths, which also explains the unusually metallic in-plane transport in the lightly-doped region.

Key words: $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$; transport properties; charge stripes; c-axis transport

1. Introduction

Recent studies have shown [1,2] that a combination of the pseudogap and the \mathbf{k} -dependence of the c -axis matrix element is largely responsible for the steeply insulating behavior of $\rho_c(T)$. The angle-resolved photoemission spectroscopy (ARPES) measurements of $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}$ (Bi-2212) have demonstrated [3] that the pseudogap causes destruction of the Fermi surface starting from the $(0, \pm\pi)$ and $(\pm\pi, 0)$ points, and the c -axis matrix-element effect [1] tends to amplify the contribution of the electrons on these gapped portions of the Fermi surface to the c -axis transport.

On the other hand, the Fermi surface of underdoped $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$ (LSCO) is observed only near the $(\pm\pi, 0)$, $(0, \pm\pi)$ points (1D-like Fermi surface)[4], which is quite different from that of Bi-2212, and thus it is not likely that the pseudogap shows a similar development on the Fermi surface of the LSCO; therefore it would be illuminating to examine the c -axis trans-

port of LSCO, particularly in the underdoped region, and compare it with that of other cuprate systems.

2. Results and Discussions

The series of $\text{La}_{2-x}\text{Sr}_x\text{CuO}_{4-\delta}$ single crystals ($0.01 \leq x \leq 0.10$) are grown by the TSFZ technique[5] and the in-plane and out-of-plane resistivities (ρ_{ab} and ρ_c) are measured using a standard ac four-probe method.

Figure 1(a) shows the temperature dependences of ρ_{ab} of our crystals with the vertical axis in the logarithmic scale. As was emphasized in Ref. [6], the temperature dependence of ρ_{ab} is metallic ($d\rho_{ab}/dT > 0$) at moderate temperatures even in the sample ($x = 0.01$) where ρ_{ab} is as large as 20 m Ω cm, which corresponds to k_Fl value of only 0.1, and thus the Mott-Ioffe-Regel limit for metallic transport is strongly violated; we have argued that this behavior, in combination with the mobility that is only weakly doping-dependent, is best understood to result from a self-organized network of hole-rich regions that constitute the path for the charge

¹ Corresponding author. E-mail: komiya@criepi.denken.or.jp

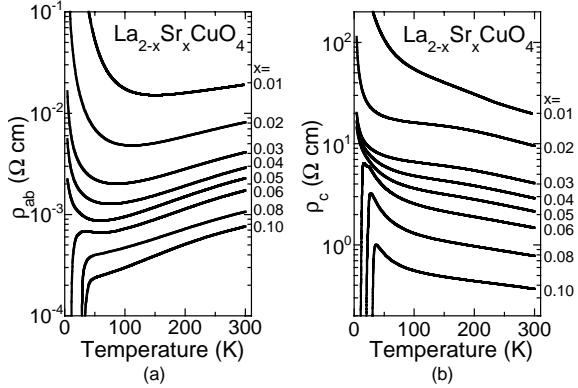


Fig. 1. Temperature dependences of (a) the in-plane and (b) the out-of-plane resistivities of $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4-\delta$ single crystals for $0.01 \leq x \leq 0.10$.

transport.

Figure 1(b) shows the temperature dependences of ρ_c for the same doping range. Although ρ_c increases with decreasing temperature in all the samples, the temperature dependence of ρ_c at moderate temperatures (100 – 300 K) is weak for $x \geq 0.02$ (the change is less than a factor of two), which is in contrast to the $\rho_c(T)$ behaviors of Bi-2212 or Bi-2201 where $\rho_c(T)$ shows a steep divergence below the pseudogap temperature[7]. Since the c -axis transport in any cuprate should necessarily reflect the c -axis matrix element that tends to amplify the development of the pseudogap with a $d_{x^2-y^2}$ symmetry, the $\rho_c(T)$ behavior of underdoped LSCO means either that the pseudogap is already fully developed at 300 K, or that the pseudogap has a symmetry different from $d_{x^2-y^2}$.

The most surprising feature we find in this work is that ρ_c/ρ_{ab} at moderate temperatures is almost completely independent of doping in the non-superconducting regime ($0.01 \leq x \leq 0.05$), as illustrated in Fig. 2. In this x -independent regime, the magnitude of ρ_c/ρ_{ab} is ~ 1000 at 300 K and increases with decreasing temperature, which indicates that the same charge confinement mechanism is at work down to $x=0.01$. As already mentioned, the metallic in-plane transport that violates the Mott-Ioffe-Regel limit suggests [6] that the transport is occurring through a self-organized network of hole-rich paths[8]. The striking x -independence of ρ_c/ρ_{ab} is naturally understood in this picture of transport through a self-organized network, because in such a case antiferromagnetically correlated magnetic domains, which are separated by charged stripes, tend to align hole-rich domain boundaries along c -axis, then the transport anisotropy is determined by the local electronic nature of the hole-rich segment that is presumably unchanged with x (only the average distance between the hole-rich paths changes with x)[5]. Therefore, the behavior of ρ_c/ρ_{ab}

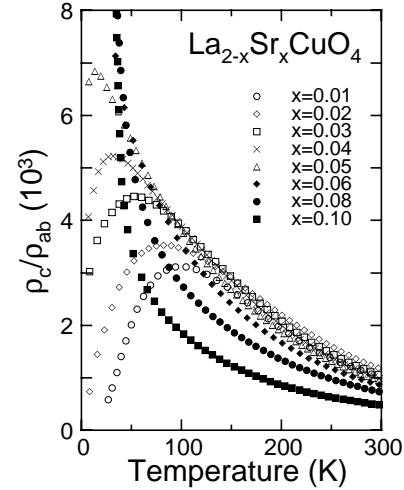


Fig. 2. Temperature dependences of the resistivity anisotropy ratio ρ_c/ρ_{ab} .

in the lightly-doped region is consistent with the self-organized-network picture and gives strong support to it. For $x \geq 0.06$, ρ_c/ρ_{ab} shows a rapid decrease, which suggests that the c -axis charge confinement becomes less effective as x is increased in the superconducting regime.

Acknowledgements

X.F.S. acknowledges support from JISTEC.

References

- [1] L. B. Ioffe, A. J. Millis, Phys. Rev. B **58** (1998) 11631.
- [2] M. Suzuki, T. Watanabe, Phys. Rev. Lett. **85** (1999) 4787.
- [3] M. R. Norman, H. Ding, M. Randeria, J. C. Campuzano, T. Yokoya, T. Takeuchi, T. Takahashi, T. Mochiku, K. Kadowaki, P. Guptasarma, D. G. Hinks, Nature (London) **392** (1998) 157.
- [4] A. Ino, C. Kim, M. Nakamura, T. Yoshida, T. Mizokawa, Z.-X. Shen, A. Fujimori, T. Kakeshita, H. Eisaki, S. Uchida, Phys. Rev. B **62** (2000) 4137.
- [5] S. Komiya, Y. Ando, X.F. Sun, A.N. Lavrov, Phys. Rev. B (in press).
- [6] Y. Ando, A. N. Lavrov, S. Komiya, K. Segawa, X. F. Sun, Phys. Rev. Lett. **87** (2001) 017001.
- [7] A. N. Lavrov, Y. Ando, S. Ono, Europhys. Lett. **57** (2002) 267.
- [8] S. A. Kivelson, E. Fradkin, V. J. Emery, Nature (London) **393** (1998) 550.