

Pressure effect on a ferromagnetic transition temperature of RuSr₂GdCu₂O₈

Jun Shibata ^{a,1}, Hirotsugu Goto^a Hiroki Takahashi^a Yuh Yamada^b Akiyuki Matsushita^c

^aCollege of Humanities and Sciences, Nihon University, 3-25-40 Sakurajousui, Setagaya 156-8550, Japan

^bShimane University, 1060 Matsue-shi, Nishikawazu-cyo, 690-0823, Japan

^cNIMS, 1-2-1 Sengen Tsukuba-shi, 305-0047, Japan

Abstract

A number of attention has been paid for RuSr₂GdCu₂O₈ because of the coexistence of ferromagnetic state and superconducting state below about 30K. In order to investigate the character of the superconducting state which coexists with ferromagnetism, the pressure experiments on a ferromagnetic transition temperature have been performed. The enhancement of ferromagnetic transition temperature was observed with increasing pressure. High-pressure x-ray experiments on this material are in progress.

Key words: ferromagnetism, superconductivity, pressure effect, Ru1212

1. Introduction

RuSr₂GdCu₂O₈(Ru1212) discovered in recent years is an interesting material in which ferromagnetic state and superconducting state coexist. The lattice structure of Ru1212 is similar to that of YBa₂Cu₃O_{7- δ} (YBCO). Ru1212 is derived from the YBCO structure by replacing Y with Gd, Ba with Sr, and the CuO chains with a RuO₂ plane, respectively. This system was first reported by Bauernfeind *et al.*[1] as superconducting but not magnetic material. However, Ru1212 have a Curie temperature (T_{Curie})‘135K and bulk superconducting transition temperature (T_{C})‘0‘46K, depending on the heat treatment. Although there is a judgment that ferromagnetic impurities SrRuO₃ with T_{Curie} ‘160K is contained[2], field-induced ferromagnetism was observed by neutron diffraction measurements[3]. It is reported that Ru moments with parallel to *c*-axis incline gradually to *ab*-plane with applying field. Yamada *et al.* reported pressure effect on the T_{C} up to 8GPa by electrical resistivity measurements[4]. They observed

the onset temperature increase and the offset temperature decreases with applying pressure. However, since the average of onset and offset temperature does not change so much, they indicated that the pressure effect on T_{C} is small and transition width broadened with pressure. Yamada *et al.* synthesized another superconductor FeSr₂GdCu₂O₈(Fe1212) with the same crystal structure as Ru1212 in which ferromagnetism does not exist. They observed both onset and offset T_{C} of Fe1212 increase with applying pressure, in contrast to Ru1212. In this work the pressure effect of a ferromagnetic transition temperature has been measured by AC susceptibility method, in order to study the ferromagnetic state and the relation between ferromagnetic and superconducting state.

2. Experiments

RuSr₂GdCu₂O₈ was synthesized by solid-state reaction of stoichiometric powders of RuO₂, SrCO₃, and CuO. The mixture was first decomposed in air at 950 and heated for 24h. It was pressed into pellets

¹ E-mail:happyjun@sol.dti.ne.jp

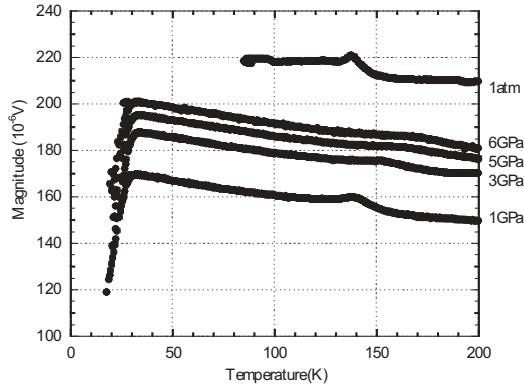


Fig. 1. Temperature dependence of the susceptibility of Ru1212 under various applied pressure.

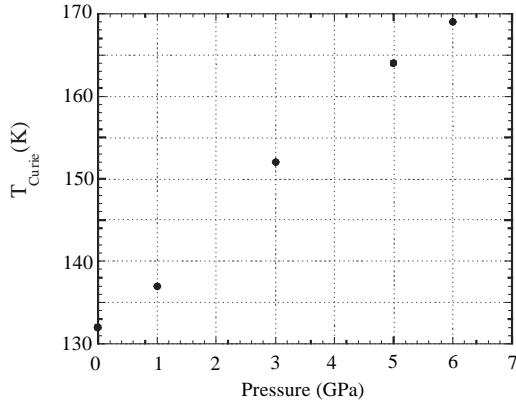


Fig. 2. Pressure dependence of the ferromagnetic transition temperature of Ru1212.

and heated at 960 for 24h in air. Next sintering step took place in flowing nitrogen at 960 for 24h, and heated at 1060 for 44h in flowing oxygen. Last sintering step took place in flowing oxygen at 300 under 100atm for 36h. This Ru1212 shows superconducting transition temperature $T_C=40\text{K}$ and ferromagnetic transition temperature $T_{\text{Curie}}=135\text{K}$. Pressure generating equipment is a cubic-anvil apparatus that was used to generate hydrostatic pressures up to 8GPa at temperatures down to 15K in NIMS. The mixture of Fluorinert FC70 and FC77(1:1) was used for the pressure transmitting medium.

3. Results and Discussion

Figure 1 shows the output signal of AC susceptibility measurements as a function of temperature at each pressures. The sudden change at around 40 K and the cusp at around 140 K correspond to T_C and T_{Curie} , respectively. The pressure dependence of T_C and T_{Curie} are shown in Fig. 2 and Fig. 3. From Fig.2 T_{Curie} in-

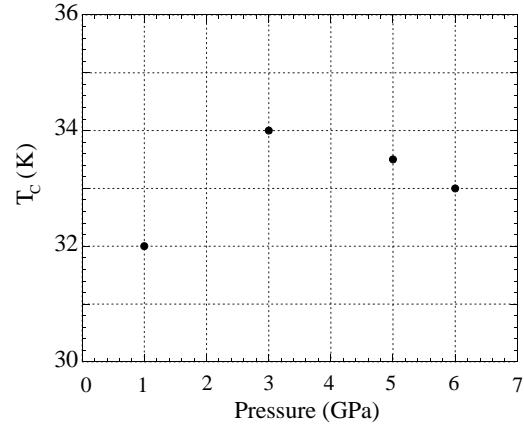


Fig. 3. Pressure dependence of the superconducting transition temperature of Ru1212.

creases with pressure at a rate of 6K/GPa. However, this pressure effect is larger than the previous results measured at the magnetic field of 2T[4]. It seems that the ferromagnetic state are strongly affected by the external field. On the other hand, the cusp-shape anomaly accompanied by ferromagnetic transition becomes sluggish at higher pressure. This behavior is considered that the ferromagnetic moment in Ru is suppressed by pressure. Concerning superconductivity, T_C does not change so much with applying pressure as shown in Fig.3, which is consistent with the electrical resistivity measurements[4]. Thus this pressure dependence is considered to depend on whether the system has ferromagnetic state or not. High-pressure experiments with changing magnetic field are in progress. High-pressure X-ray measurements for Ru1212 and Fe1212 have been carried out. Precise refinements are now in progress in order to clarify the relation between crystal structure and magnetic properties.

References

- [1] L. Bauernfeind, W. Widder, and H. F. Braun : *Physica C* **254** (1995) 151.
- [2] I. Felner, U. Asaf, S. Reich, and Y. Tsabba : *Physica C* **311** (1999) 163.
- [3] H. Takagiwa, J. Akimitsu, H. Kawano-Furukawa, and H. Yoshizawa: *J. Phys. Soc. Jpn* **70** (2001) 333.
- [4] Y. Yamada et al. *Proceedings of AIRAPT in Beijin* (2001)