Statistical mechanics of the gas-liquid condensation
in the attractive Bose gas
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Abstract

The Bose gas with the attractive interaction is treated on the basis of the statistical mechanics. It is proved that,
in cooling and compressing the system, the gas-liquid condensation (GLC) always occurs before the occurrence of
the BEC. The critical size-distribution of the many-body wave function at the GLC point is obtained.
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1. Introduction

The gas-liquid condensation (GLC) is a universal
phenomenon occurring both in the classical and quan-
tum world. When the GLC occurs at high temperature,
its main reason is the strong attractive interaction so
that the quantum statistics plays a minor role. This is
the classical GLC which we experience in the daily life.

When the GLC occurs at low temperature, however,
its main reason is the weak attractive interaction so
that the quantum statistics plays an important role.
From now, we will call it the quantum GLC . The GLC
in the attractive Bose gas at low temperature and high
density is a prototype of the quantum GLC. (If the Bose
particles form the Bose-Einstein condensation (BEC),
their thermal equilibrium state is the liquid. The BEC
gas is unstable to the attractive interaction. Hence, the
GLC does not exist in the BEC phase.)

The region in which the quantum GLC is realized
in the phase diagram is a normal phase in the vicinity
of the BEC transition point. In this region, the many-
body wave function, in which the permutation sym-
metry is satisfied, involves many Bose particles, but it
does not reach the macroscopic size. If the weak at-
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tractive force acts on the Bose particles belonging to
such a wave function, they abruptly undergo the GLC
which is enhanced by the Bose statistics.

As an example of such a quantum GLC, we know
two probable candidates. The first is the helium 4 gas
at an extremely low temperature and an extremely low
pressure. The second is the trapped atomic gas just
above the BEC transition point.

To formulate the quantum GLC, we must deal with
the attractive interaction between the Bose particles in
such a way that the Bose statistics is exactly satisfied.
This problem reminds us of the famous argument by
Feynman, in which he describes the behavior of the
Bose particles at low temperature by emphasizing the
role of the many-body wave function [1]. By applying
this philosophy to the attractive interaction, this paper
will explore the quantum GLC.

2. Formalism

The GLC is regarded as a singularity appearing in
the pressure-volume curve determined by the equation
of state:
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This singularity comes from a singularity of Zy (u) in
the right-hand side.

Let us write Zv (u) of the Boson system with an at-
tractive contact interaction g/VZ o apaT A_p/ Qpr s

(g < 0) in terms of the following perturbatlon expan-

sion,
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Zo(w) in the right-hand side represents the grand par-

tition function of the free Bose gas. Using the sym-
metrized density matrix, Zo(N) has a following form
in coordinate space,
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where P denotes the permutation, p a density distri-
bution, and A the thermal wavelength.

Feynman regarded Zy(u) as a random assembly of
the many-body wave functions including s Bosons, in
which an interchanging of s particles leaves the wave
function unaltered, and he expressed Z(u) as follows,

Zo() = exp (_Z eﬁ:s> Hexp (—%Zi%) . (5)

The first and second term in the right-hand side cor-
responds to the p = 0 and p # 0 Bose particles respec-
tively. Using an identity —» " (—z)°/s = In(1 + z)
in the first term, one obtains the well-known expres-
sion which shows the divergence of Zy(u) (BEC). In
the normal phase, as the size of the many-body wave
function increases, its contribution to Zy(u) decreases
proportionally to exp(Bus) for the p = 0 Boson, and
to exp(Bus)/s*® for p # 0 Boson. (Here we neglect
a factor 1/s due to the rotational symmetry). At the
BEC transition temperature Ty (u(Tp) = 0), its size-
dependence disappears for the p = 0 Boson, so that
the macroscopic wave function contributes to Zo(u) as
equally as the microscopic one.

The interaction is normally considered using the
linked-cluster expansion. In the vicinity of the BEC
transition point, however, the diagram which reflects
the macroscopic many-body wave function plays an
important role in < THy¢(081) -+ Hit(Bn) >c. Follow-
ing the Bose statistics, the particle lines belonging to
different bubble diagrams in it but having a same mo-
mentum p must be exchanged. Such a procedure gives

us a polygon-like diagram which reflects the many-
body wave function. At each vertex of the polygon, an
interaction line appears. In < TH;¢ (1) - - - Hit (Bn) >e,
these polygons being connected by the interaction lines
form a cluster. A contribution of the polygon including
2s particles with the same p has a following form [2][3],
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Summing various K,’s over all possible combinations
in Eq.(3), one obtain a following Zv (1)
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Since all possible ways of connecting K, by the inter-
action lines in < TH;:(B1) - Hit(Bn) >c has an or-
der of n for each distribution of K, the second term
V/23%" K, appears. We define x by K = 1/V Zz,p z°
Using Eq.(7) in Eq.(2) and summing over s, one gets a
following equation of states,
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where gsa(y) = 32, y" /n®/%.
In cooling and compressing the system, the negative
1 approaches zero. When such a condition is satisfied,
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the integral over p in the second and the third term of
the right-hand side of Eq.(8) diverges. Exactly, when
wand T satisfies a condition p. = —/|glksT./V, this
divergence occurs first in the [ = 0 term for p = 0 in
Eq.(8). The value of p. and T¢ is determined by this
condition and the p(T'). In view of . < 0, To < Te [4].

This divergence leads to a gas-liquid coexistence
line characteristic of the GLC in the P — V curve.
Using this p. and 7. in €’** of Eq.(5), one can
estimate the critical size-distribution of the many-
body wave function at the occurrence of the GLC as

exp (—/Ugl/V)/ (oaTe) x5
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