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Abstract

We present NMR and strain-gauge study of a zigzag chain spin-gap material TlCuCl3 which undergoes a field-
induced long-range magnetic ordering transition regarded as a magnon Bose-Einstein Condensation (BEC). De-
formation of the crystal lattice at the magnetic transition is inferred from the temperature dependence of the
quadrupole shift of Cl and direct strain-gauge measurements, implying strong spin-phonon coupling. A λ-like singu-
larity in spin-lattice relaxation rate at the transition reveals enhancement of electron spin fluctuations as precursor
to transverse Néel order.
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1. Introduction

TlCuCl3 belongs to the class of quasi one-
dimensional (1D) spin liquids having non-magnetic
singlet ground state separated from the first excited
triplet by an energy gap ∆. Once the applied mag-
netic field is sufficient to destroy the gap (H > Hg =
∆/gµB) the system becomes partially polarized, and
weak interactions between 1D segments can induce a
long-range order (LRO). Depending on the nature and
values of the exchange couplings, the properties of the
field-induced gapless state are quite individual to each
material.

The structure of TlCuCl3 is monoclinic P21/c.
Cu2Cl6 dimers are stacked in double chains along the
a-axis and separated by Tl+ ions in the bc plane. In-
tradimer AF interactions between spin-1/2 Cu2+ ions
provide singlet ground state with ∆/kB ≈ 7.5 K [1].
However, 3D interactions are also quite strong due
to sizable interdimer couplings [2]. The field-induced
gapless state in TlCuCl3 is resolved into a commen-
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surate 3D transverse Néel order, considered as a
Bose-Einstein condensate (BEC) of dilute magnons
[3]. One of the signatures of the BEC is the power-
law temperature dependence of the transition field,
g/2(HLRO(T ) − Hg) ∝ Tφ, with generally anisotropic
g-factor. BEC predicts φ=3/2. Experimentally how-
ever, φ = 2.1 ± 0.1 [1].

The magnon BEC is a unique phenomena deserving
a careful study on the local level, which is a common
objective of NMR. Besides, the existing discrepancy
between the theoretical and experimental critical expo-
nent has often been attributed to strong spin-phonon
coupling, which needs to be experimentally checked. In
this proceeding we report NMR and strain gauge stud-
ies of the transition of TlCuCl3 to the field-induced
magnetic long-range ordered state.

The sample preparation technique and experimen-
tal procedures have been described earlier [1,4]. All the
measurements have been done in H ⊥ (10̄2) configu-
ration.
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2. Results and Discussion.

Static electronic properties (static magnetization
and charge distribution) are borne in NMR lineshapes
and peak positions. In our recent study [4] we have
found a strong response of the crystal lattice to the
magnetic ordering transition. This has been inferred
from the abrupt 10% change of the quadrupolar shift
of Cl at the LRO transition temperature, TLRO. Direct
strain-gauge measurements have shown sizable changes
of the crystal size at the ordering transition. The
relative b-axis strain, ∆b/b, was found negative and
roughly linear in field, (∆b/b)/H ∝ −3.7×10−6T−1.
The a-axis strain is positive and the order of magni-
tude smaller than ∆b/b. The observed involvement of
the crystal lattice into the magnetic ordering transition
evidences strong spin-phonon coupling in TlCuCl3.

Scrupulous examination of NMR spectra in the
vicinity of the transition has shown that the spectrum
shape changes discontinuously, and that spectral fea-
tures of both the ordered and the disordered phases
coexist in 0.2 K×0.2 T region around the phase bound-
ary. Taken together, these effects are quite indicative
of the first-order transition, which is rather exotic
for a purely magnetic system. At the same time, the
observed involvement of the lattice could be a more
common trigger for the first-order transition.

Low-frequency electron spin dynamics is probed by
the nuclear spin-lattice relaxation rate, 1/T1. Fig. 1
represents the temperature dependence of 63Cu 1/T1,
measured in fields 4.8, 5.2, and 8.6 Tesla, i.e. below,
at, and above (g⊥/2)Hg (H ⊥ (102̄)). At high tem-
peratures 1/T1 goes as T3 due to the spin gap, re-
gardless of the field. Below 15 K the T -dependence is
field-dependent. In 8.6 T, 1/T1 is peaked around 5.6 K
which is TLRO at this field. At H = (g⊥/2)Hg=5.2 T,
1/T1 is nearly constant at low temperatures. The low-
temperature T -dependence in 4.8 T is linear. The field
dependence of the relaxation rate measured at 1.5 K
is shown in the insert in Fig. 1. The peak in 1/T1

around the phase boundary (HLRO(1.5 K)=5.35 T) is
also present here.

The source for 1/T1 is transverse hyperfine field fluc-
tuating at the NMR frequency. Therefore, the peak in
1/T1 at the phase boundary is evidently due to forma-
tion of the local hyperfine staggered field at Cu site
Cuh⊥, proportional to the transverse staggered magne-
tization component M⊥. Existence of M⊥ in the LRO
state which signifies the transverse Néel order, has been
detected in neutron scattering [5] and NMR [4]. 1/T1

shows however that the fluctuating component of M⊥
arises in a finite region outside the ordered phase prior
to the static M⊥ which only shows up below the tran-
sition. Upon deeper penetration into the long-range
ordered state, the fluctuations of M⊥ freeze and 1/T1
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Fig. 1. 63Cu spin-lattice relaxation rate. Main panel: Temper-

ature dependence in three different fields. Insert: Field depen-

dence at 1.5 K.

diminishes, again as T3.
The T -dependence of 1/T1 around the phase tran-

sition in TlCuCl3 is drastically different from that in
spin-1/2 AF ladder Cu2(C5H12N2)2Cl4 [6], where pro-
ton 1/T1 turns down well above the transition temper-
ature without any significant peak at the transition.

The weak T -dependence of 1/T1 at 4.8 and 5.2 T
at low temperatures is indicative of quantum critical
regime, similarly to Cu2(C5H12N2)2Cl4.

Summarizing, we have detected a strong response
of the crystal lattice to establishment of the magnetic
long-range order, which evidences strong spin-phonon
coupling. Details of the NMR spectra in the close vicin-
ity of the transition imply the first-order transition.
The nuclear spin-lattice relaxation is strongly peaked
around the phase boundary due to fluctuations of the
transverse staggered magnetization component.
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