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Abstract

The anisotropy of high Tc superconductors arises both from the coupling constant and the Fermi surface in the
Ginzburg-Landau framework. The anisotropy of the former is expressed by dx2−y2 symmetry. The shapes of the
Fermi surface of high Tc superconductors are various and depend on materials and doping ratio. In this paper, we
study the anisotropy of the upper critical field Hc2 in the ab plane with dx2−y2 symmetry and with typical shapes
of the Fermi surface.
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1. Introduction

The upper critical field Hc2 of some high tempera-
ture superconductors shows interesting behavior with
fourfold symmetry, when the magnetic field is applied
in the ab plane. For example, the angular dependence
of Ca0.5La1.25Ba1.25Cu3Ox [1] is different by π/4 from
that of La1.86Sr0.14CuO4 [2] and Pb2Sr2Ca0.38Cu3O8

[3].
To explain these results, we studied both the effects

of anisotropic coupling constant of the pairing state
and anisotropic Fermi surface, assuming a simple Fermi
surface [4]. In this paper, we present the results ofHc2,
using more realistic Fermi surface.

2. Formulation

The detailed derivation of the fourfold symmetry for
the upper critical field in the ab plane is given in [4]
and expressed near the transition temperature Tc as
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∆h ≡ ∆Hc2

Hc2

=
B4 cos 4θ

A2
δ, (1)

where δ = ln(T/Tc), θ is the angle between the mag-
netic field and the principal crystal axes in the ab plane
and

A2n =
2(−1)n

(2πkBT )2n

�
1 − 1

22n+1

�
ζ(2n + 1) . (2)

Here, ζ(z) is the Riemann’s zeta function.
The quantitiy which expresses the magnitude of

anisotropic part is given by

B4 =
1

64p20X < V 2
x >

− 3A4 < V 4
x − 3V 2

x V
2

y >

16A2 < V 2
x >2

. (3)

To obtain the explicit values of B4, we assume a
following expression for the energy dispersion:

ε(p) =
�

n

Cnεn(p⊥)+
p2z
2m

≡ εab(p⊥)+ εz(pz) , (4)

where

ε1(p⊥) = 2 − cos apx − cosapy , (5a)

ε2(p⊥) = 1 − cos apx cosapy (5b)

and

ε3(p⊥) = 2 − cos 2apx − cos 2apy , (5c)
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where a is the lattice constant in the ab plane. These
are first three functions with square symmetry in the
momentum space.

The velocity V in (3) is obtained by

V =
∂ε(p)

∂p
. (6)

These quantities p and V are defined with respect to
the crystalline axes.

The function which expresses the anisotropy of the
pairing state enters in the average < · · · > at the Fermi
surface as

< B >=
1

N(0)

�
dΩ(pF )φ2(p̂)N(pF )B(pF ) , (7a)

N(0) =

�
dΩ(pF )φ2(p̂)N(pF ) , (7b)

where we consider the dx2−y2 pairing state:

φ(p̂) =
√

2 cos 2ψ . (8)

3. Numerical Results and Conclusions

For numerical calculation of the equation (1) for ∆h,
we need an explicit expression of the energy dispersion
and we use a set of parameters Cn = (0.05, 0.01, 0.015)
eV in (4). In Fig. 1, we show the equilateral energy sur-
face in the ab plane. These shapes resemble the results
of the doping dependence of the Fermi surface, taken
from the ARPES spectra for La2−xSrxCuO4 [5].
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Fig. 1. Equilateral enery surfaces for the energy dispersion

(4) whose parameter values are given in the text. The enegy

difference between two adjacent curves is ∆ε = 0.02 eV.

In Fig. 2, we present the Fermi energy εab depen-
dence of ∆h for the temperature T = 35, 36 and 37K
for Tc2 = 37.5K. The divergence of ∆h at εab = 0.12 eV
is due to that of the density of states at p⊥ = (π/a, 0)
and its equivalent points.
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Fig. 2. The relative magnitude of anisotropy ∆h as a function

of εF for T = 35,36 and 37K with Tc = 37.5K with the same

parameter set of ∆h Fig. 1.

The sign change of ∆h depending on εab corresponds
to the reverse of the maximum-minimum position of
the upper critical field with respect to the angle θ found
in the observations. The magnitude of ∆h is, however,
small and doping dependence is not clear in this study.
To solve these ploblems, it is necessary to have informa-
tions of Cn on doping dependence, which is obtained
from microscopic theory.
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