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Abstract

We examine the effects of the commensurability and charge ordering on the optical conductivity of spin-density-
wave states using the extended Hubbard model with one-dimensional quarter-filled band. The conductivity obtained
by both single particle and collective excitations is calculated within the random phase approximation. The mass
enhancement due to inter-site repulsive interactions is estimated from the contribution of the collective mode.
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1. Introduction

The collective mode describing the translational mo-
tion of the density wave is significant for the property
associated with the low lying energy. A typical example
is the dynamical behavior of the optical conductivity
of organic conductor. [1,2].

For the incommensurate density wave, the optical
conductivity exhibits the pronounced peak at zero fre-
quency, which originates in the collective mode [3]. The
optical conductivity for spin-density-wave (SDW) is
determined only by the collective excitation since the
effective mass associated with the dynamics of the den-
sity wave is the same as the band mass. The conduc-
tivity for charge-density-wave (CDW) is determined
mainly by the single particle excitations due to a large
effective mass coming from the coupling to phonon.

However, the property of the conductivity is still un-
clear for the commensurate SDW with a quarter-filled
band and charge ordering, which has been found in the
organic conductors [4]. In the present paper, we exam-
ine the conductivity and the effective mass for such a
SDW state.
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2. Model and results

We consider a one-dimensional extended Hubbard
model given by

H=- Z Z (t - (_1)itd) (Cl,ciﬂ,a + h.c.)

i=10=1,]

+ Z (Unitniy + Vniniea + Vaninige) (1)

7

where CZ-TU denotes a creation operator of an electron
at the i-th site with spin 0. n; = nit + ns) and nie =
C’Z.TU Cis. The quantity ¢t denotes the transfer energy and
ta corresponds to the dimerization. Quantities U, V
and V2 are the coupling constants for repulsive interac-
tions of the on-site, the nearest-neighbor site and the
next-nearest-neighbor site. We take ¢ and the lattice
constant as unity. By applying the mean-field theory to
the Hamiltonian (1) at quarter-filling, the three kinds
of ground states (I), (II) and (III) are obtained [5,6],
i.e., (I) a pure 2kr SDW state, (II) a coexistent state
of 2kr SDW and 4kr CDW for large V', and (III) a co-
existent state of 2kp SDW, 2kp CDW and 4kp SDW
for large Vo where kr(= m/4) the Fermi wave number.

The optical conductivity o(w) is obtained by calcu-
lating the current-current correlation function in a way
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Fig. 1. The conductivity for U = 4, tq = 0.1 and n = 0.02 with
the fixed (a) V = Vo = 0 (state (I)), (b) V =1.6 and Vo =0
(state (II)), and (c¢) Vo = V/1.2 = 1.6 (state (III)).

similar to the incommensurate case [3], i.e., o(w)
00(w)+0c(w) with oo (w) = Re{[I13; (w) —113;(0)]/(iw)
and oc(w) = Re{llj;(w)/(iw)} where IL;;(w)
N7 [P Ar (T (1) J(0)) €7 i —wtin and J
ie>", (t—(=1)'ta)(C]; ,Cis — C],Cit1,5). The con-
ductivity oo (0c) denotes the contribution of the single
particle (collective) excitation [7].

In Fig. 1, the conductivity as a function of frequency
w is shown for U = 4 and tq = 0.1 with three choices
of V and V,2. The three broad peaks of the conduc-
tivity oo (dotted curve) correspond to the contribu-
tion from inter-band transitions [8], i.e., from the filled
(lowest) band to upper three bands, where four bands
originates in quarter-filling. We verified numerically
two sum rules, fooo dw op(w) = —me*(K)mr/2 and
fooo dw oc(w) = 0 where (K)mr is the average of the
kinetic energy per site. The total conductivity o (solid
curve) exhibits three or four peaks at the frequencies
corresponding to the spectrum of the collective mode
where even the lowest spectrum has a gap due to the
commensurability. The conductivity for V= 1, = 0
(Fig. 1(a)) exhibits a main peak (i.e., first peak) around
w =~ 0.85 and the third peak with a finite weight around
w =~ 4.9. The second peak, which exists around w ~
3.1 in the absence of dimerization tq [7], disappears
due to tqa # 0. The conductivity for large V' and/or
Vs (Fig. 1(b) and (c)) is mainly determined by oo (w).
This indicates that the contribution from the collective
mode is suppressed when the charge ordering appears.
Such a fact is also understood by the result that the
spectral weight of the collective mode decreases with
increasing V or V5 [9].
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Fig. 2. (a) V dependence of m/m* for U = 4, tq = 0.1
and Vo = 0. The ground state is state (I) (state (II)) for
V < Vo >~ 085 (V > V,). (b) Vo dependence of m/m™ for
U =4, tq = 0.1 and V = 1.2V5. The ground state is state (I)
(state (IH)) for Vo < Vo >~ 1.35 (V2 > Vgc).

Here we examine the effects of V and V5 on the
weight of the main peak of o(w). Since the finite imagi-
nary part, 7, is introduced in the present numerical cal-
culation, we calculate the weight using a method given
by fowo dw oc(w) = V2 e*m/m* where m (= 7/(4v2))
is the band mass and wp shown by the arrow in Fig. 1
satisfies oc(wo) = 0. The quantity m* corresponds to
the effective mass for the collective mode with the first
(lowest) pole. In the limit of the weak coupling, one
obtains m/m* = 1 showing that the conductivity is
determined only by a collective mode with w — 0. In
Fig. 2, V or V, dependence of m/m" is shown where
m/m* < 1for V = Vo = 0 due to the weight shifting
to higher frequency as seen in Fig. 1(a). The rapid de-
crease of m/m” is obtained when charge ordering ap-
pears for V' > V; and/or Va2 > Vac. For large V' and
Va, the effective mass is enhanced since even the total
weight of the collective modes decreases and that of
higher frequency increases (Fig. 1(c)).
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