

Temperature dependence of magnetic torque for a single crystal MgB₂ in 10 kG

Toshiyuki Atsumi ^a, Mitsuyuki Tsuji ^a, Mingxiang Xu ^b, Hideaki Kitazawa ^b,
Takekazu Ishida ^{a,1}

^a*Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan*

^b*Nanomaterials Laboratory, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan*

Abstract

We have investigated the magnetic torque of MgB₂ by using a torque magnetometer consisting of a 4-K closed cycle refrigerator and a variable field permanent magnet. Single crystals of MgB₂ have been synthesized by the vapor transport method. We examine the mass anisotropy $\gamma = \sqrt{m_c/m_{ab}}$ by analyzing the magnetic torque curves of MgB₂. We discuss that γ is not sensitive to temperature in a constant field 10 kG.

Key words: torque; anisotropy; MgB₂; refrigerator

1. Introduction

It has been amazing that a metallic magnesium diboride MgB₂ became superconducting at a temperature higher than what the conventional BCS theory predicts [1]. Actually, MgB₂ is a superconductor of $T_c = 40$ K. Since this material is metallic and is not so expensive, it seems to be very promising to the various applications.

One of the basic material parameters of a superconductor is certainly an anisotropy parameter. It is desirable to carry out the experiments with single crystals, but it is very difficult to grow a MgB₂ single crystal because of a complicated phase diagram of the Mg-B system. Therefore, most of the preceding experiments have been limited to the polycrystalline samples. It is also not unveiled how the nature of the multibands and the multigaps influences the anisotropy [2].

In the present study, we carry out the systematic torque measurements to reveal the temperature dependence of γ by using a single crystalline MgB₂.

2. Experimental

Xu *et al.* [3] succeeded in synthesizing a single crystal of MgB₂ by the vapor transport method. They reported that the onset temperature of superconductivity was 38.6 K. The starting materials of Mg (99.99%) chips and a B (99.9%) chunk were sealed in a molybdenum crucible by electron beam welding. The crucible was first heated to 1400°C at a rate of 200°C/h, was kept for 2 hours, then was cooled slowly to 1000°C at a rate of 5°C/h, and was finally cooled to room temperature by switching off the furnace.

We used a torque magnetometer on the basis of a 4-K closed cycle refrigerator and a variable field permanent magnet [5]. The temperature of a top-loading insert is controlled by the two-independent PID controllers in the temperature regime from 300 K down to 1.5 K with a typical stability of ± 0.01 K. A torque sensor consists of the four piezoresistors on a silicon cantilever. The torque can be measured as an off-balance signal of the Wheatstone bridge. We carried out the torque measurements with sample and without sample for a long term, i.e., the experiments last continuously more than 15 days without supplying any liquid helium. The tem-

¹ Corresponding author.
E-mail:ishida@center.osakafu-u.ac.jp

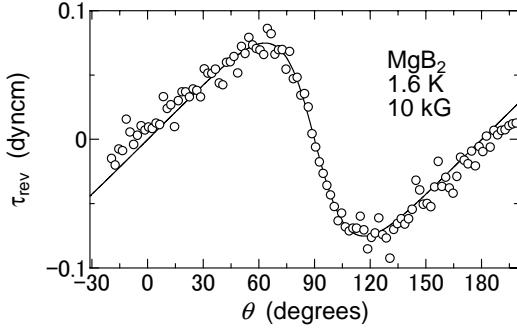


Fig. 1. The reversible torque τ_{rev} of MgB₂ as a function of angle θ at 10 kG (1.6 K).

peratures were scanned from 1.6 to 45 K. A typical temperature step was 0.5 K, and the angular step was 0.5 degrees. The applied field was fixed to the maximum value (10 kG).

3. Results and Discussions

We measured the torque of single crystalline MgB₂ as a function of angle in 10 kG. The reversible torque was obtained as $\tau_{rev}(\theta) = [\tau_{inc}(\theta) + \tau_{dec}(\theta)]/2$ where $\tau_{inc}(\theta)$ and $\tau_{dec}(\theta)$ are the torques as a function of increasing and decreasing angle, respectively.

In Fig. 1, we show the reversible torque τ_{rev} of MgB₂ at 10 kG (1.6 K). In the three-dimensional anisotropic London model in the mixed state, the angular dependence of the torque is given by Kogan [6] as

$$\tau_{rev}(\theta) = \frac{\phi_0 HV}{16\pi\lambda^2} \frac{\gamma^2 - 1}{\gamma^{1/3}} \frac{\sin 2\theta}{\epsilon(\theta)} \ln\left(\frac{\gamma\eta H_{c2}^{\perp ab}}{H\epsilon(\theta)}\right), \quad (1)$$

where $\epsilon(\theta)$ is $\epsilon(\theta) = (\sin^2 \theta + \gamma^2 \cos^2 \theta)^{1/2}$, θ is the angle between the applied field and the *c* axis, γ is the anisotropy parameter, $H_{c2}^{\perp ab}$ is the critical field perpendicular to the *ab* plane, and V is a sample volume.

In Fig. 2, we show γ as a function of T . The anisotropy parameter is fairly independent of temperature. We obtained $\gamma = 2.43 \pm 0.02$ by averaging at temperatures below 25 K. This is in marked contrast with the temperature dependent γ reported by Angst et al. [4].

In Fig. 3, we show the prefactor $\tau_0 = \phi_0 HV / 16\pi\lambda^2 (\gamma^2 - 1) / \gamma^{1/3}$ as a function of T . The line is an empirical formula $\tau_0(T) = \tau_0(1 - (T/T_c)^2)^\alpha$ to guide eyes where $\tau_0 = 5.54 \times 10^{-2}$ dyncm, $T_c = 33$ K, and $\alpha = 5.23 \times 10^{-1}$.

We consider that evidence for the existence of the multigaps cannot be seen as far as the temperature dependences of γ and τ_0 .

In conclusion, the electric anisotropy γ of MgB₂ is rather independent of temperature. We did not find

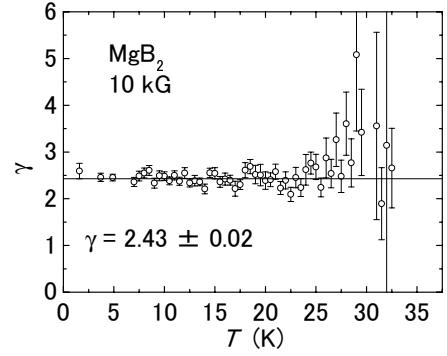


Fig. 2. Temperature dependence of the upper critical field anisotropy H_{c2}

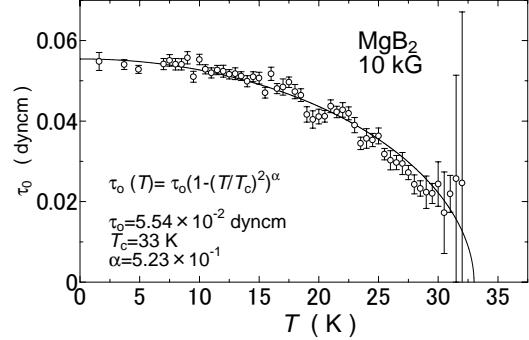


Fig. 3. A prefactor $\tau_0 = \phi_0 HV(\gamma^2 - 1)/16\pi\lambda^2\gamma^{1/3}$ of the Kogan formula as a function of T

evidence for the appearances of the multigaps in MgB₂.

Acknowledgements

This work was partially supported by a Grant-in-Aid for Science Research (Project Nos. 12554012, and 12874042) granted by the Ministry of Education, Science, and Culture of Japan.

References

- [1] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, *Nature*, **410** (2001) 63.
- [2] V. G. Kogan, Preprint cond-mat/0204038
- [3] M. Xu, H. Kitazawa, Y. Takano, J. Ye, K. Nishida, H. Abe, A. Matsushita and G. Kido, *Appl. Phys. Lett.* **79** (2001) 2779.
- [4] M. Angst, R. Puzniak, A. Wisniewski, J. Jun, S. M. Kazakov, J. Karpinski, J. Roos and H. Keller, *Phys. Rev. Lett.* **88** (2002) 167004.
- [5] M. Tuji, K. Sata, N. Yamamoto, S. Nakata, S. Kawamata, T. Ishida, S. Okayasu and K. Hojou, *IEICE Trans. Electron.*, **E85 C3** (2002) 756.
- [6] V. G. Kogan, *Phys. Rev. B* **38** (1988) 7049.