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Abstract

In strongly correlated electron systems it often happens that electronic bands acquire nonzero Chern numbers,
either by spin chirality or by spin-orbit coupling. It implies that the phase of the wavefunctions cannot be defined
uniquely all over the Brillouin zone, and one should be careful in defining order parameters. In this paper, we will
develop a theory of condensation happening in bands with nonzero Chern numbers. We take the model on the
honeycomb lattice proposed by Haldane as an example, and explain what will happen when superconductivity
occurs in a band with a nonzero Chern number. It can also be related to quantization of spin Hall conductivity.
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The discoveries of the integer and fractional quan-
tum Hall effect (QHE) have thrown new light on the
importance of topology in condensed materials. Elec-
tronic states can have nontrivial topological structure,
and the most dramatic stage for this nontrivial topol-
ogy is a two-dimensional electronic system. There the
Hall conductivity can be quantized to an integer mul-
tiple of e2/h to an enormous precision. This important
role of topology is recently reemphasized in the theo-
ries of anomalous Hall effect (AHE) in ferromagnets.
In contrast with the QHE, where nontrivial topology
arises due to external magnetic field, nontrivial topol-
ogy in the AHE arises spontaneously, i.e. without mag-
netic field, from either spin chirality or spin-orbit cou-
pling. Because the spin-orbit coupling exists in every
solid, all ferromagnets can be candidates for this non-
trivial topology. However, to the authors’ knowledge,
very few works have been done to clarify this nontrivial
topology in ferromagnets. One reason is that this non-
trivial topology is barely visible to experiments. The
Hall conductivity is the almost only chance known to
see it, but it is no longer quantized when the material
is metallic. Thus it is still a challenging task to observe
this nontrivial topology in ferromagnets.
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On the other hand, this nontrivial topology has a re-
markable feature. If the band has nontrivial topology,
i.e. nonzero Chern number [1,2], the phase of the wave-
function can no longer be a single continuous function
of k in the whole Brillouin zone (BZ). Let us write
down the Hamiltonian in the form

H =
∑

k,i,j

c†k,jHji(k)ck,i. (1)

This Hamiltonian is diagonalized by a unitary matrix
U(k) as

U(k)†H(k)U(k) = diag(E1(k), · · · , En(k)). (2)

We can define field operators aik for each eigenstate as

aik =
∑

j

U†(k)jicjk. (3)

Because the matrix U(k) is just a collection of eigen-
vectors of H(k), a nonzero Chern number implies that
U(k) cannot be defined as continuous and smooth
for the entire BZ. Instead the BZ should be divided
into some regions Vm, in each of which U(k) is conti-
nous. This affects a definition of field operators aik,
where i is a band index. As a result, aik cannot be
defined as a continous operator in the whole BZ. This
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is an important aspect, since many theories on con-
densed materials are based on the assumption that
aik is well-defined for all the wavevectors k. The
most interesting case to be focused here is the su-
perconductivity (SC). The BCS Hamiltonian of the
SC has the term ∆s1s2(k)a†

iks1
a†

i−ks2
, where sj rep-

resents the spin. When the band acquires a nonzero
Chern number, this BCS term should be modified.
We should then write aikms for k ∈ Vm, instead
of aik. Therefore, the BCS term should be written
as ∆s1s2(k)m1m2a

†
ikm1s1

a†
i−km2s2

, where k ∈ Vm1

and −k ∈ Vm2 . Thus we see that the gap function
∆s1s2(k)m1m2 is not a continuous (but piecewise con-
tinuous) function of k in the whole BZ. This is rather
apart from our knowledge, and is outside existing clas-
sifications of gap functions by point-group symmetries
[3,4]. It would be interesting if this new class of gap
functions can be found in real materials.

By working with the topological structure of ∆(k)
in the whole BZ, we can predict that it should have at
least one zero in the whole BZ. This holds both in the
singlet SC and in the triplet SC. This can be best illus-
trated by working on the SC on the honeycomb-lattice
model proposed by Haldane [5]. This model is the sim-
plest model where the bands have nonzero Chern num-
bers without external magnetic field. Note that this re-
sult asserts an existence of zeros in the whole BZ, not
on the Fermi surface (FS). If this node, which gener-
ally forms a line in the three-dimensional case, crosses
the FS, a number of experimental methods like specific
heat, nuclear magnetic resonance, can detect it. Fur-
thermore, if the gap opens everywhere on the FS, the
spin Hall conductivity [6] is quantized. Detailed calcu-
lations and results will be presented elsewhere.
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