

Effects of spin-orbit scattering on Josephson current between s-wave superconductor and Sr_2RuO_4

Y. Asano^a, T. Hirai^b, Y. Tanaka^{b,1}, J. Inoue^b, M. Sigrist^c, S. Kashiwaya^d

^aDepartment of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan

^bDepartment of Applied Physics, Nagoya University, Nagoya 464-8063, Japan

^cTheoretische Physik ETH-Hönggerberg CH-8093 Zürich, Switzerland

^dNational Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan

Abstract

The Josephson effect in *s*-wave superconductor / insulator/ Sr_2RuO_4 (S/I/SRO) junctions is studied. We focus on influences of spin-orbit scattering at the junction interface on the phase-current relation ship in the Josephson current. In the presence of the spin-orbit scattering, we find that the Josephson current has a term which is proportional to $\cos\varphi$, where φ is the phase-difference between S and SRO.

Key words: p-wave; Josephson current; Spin-orbit scattering

1. Introduction

The anisotropic superconductivity has been an important topics in condensed matter physics since unconventional superconductivity was discovered in heavy-fermion materials [1]. Anisotropic superconductivity was found in the layered perovskite Sr_2RuO_4 (SRO) in a recent study [2]. Stimulated by the suggested triplet pairing symmetry, several studies on transport properties have been performed [3–7]. The Josephson effect between different superconductors of opposite parity, i.e. Josephson current between *s*-wave superconductors and SRO, have been studied both theoretically and experimentally [8–14]. In general, there is no first order Josephson coupling between spin-singlet and spin-triplet superconductors when the spin-flip transmission is absent [1,15–17]. In the experiment [8], however, Josephson current was observed when the *c* axis of SRO is parallel to the junction interface. This is because the potential step near the insulators become a source of the spin-orbit cou-

pling [15]. The Josephson current between two SRO's was also theoretically studied [18,19].

In general the Josephson current can be decomposed into a series of

$$J = \sum_{n=1}^{\infty} (a_n \cos n\varphi + b_n \sin n\varphi), \quad (1)$$

where φ is the phase-difference between two superconductors. In a presence of the time-reversal symmetry, in general, the Josephson current becomes an odd function of φ , i.e., $a_n = 0$. In general SIS junctions, $J \propto \sin \varphi$ because b_n , $n \geq 2$ are much smaller than b_1 . However, in S/I/SRO junctions, it is known that b_1 vanishes because the wavefunction of the Cooper pairs in two superconductors are orthogonal to each other. Thus the Josephson current is proportional to $\sin 2\varphi$ in the absence of the spin-orbit scattering. In the presence of the spin-orbit scattering, a coefficient a_1 or b_1 may remain finite [1,15–17]. In this paper, we show that a_1 becomes finite in S/I/SRO junctions.

¹ E-mail:ytanaka@nuap.nagoya-u.ac.jp

2. Effect of spin-orbit scattering

We consider S/I/SRO junctions in two-dimensional space which corresponds to the ab -plane in SRO. The pair potential in SRO is given by $\hat{\Delta}_p = i\mathbf{d} \cdot \boldsymbol{\sigma} \sigma_2$ with $\mathbf{d} = \Delta_p e^{i\gamma} \mathbf{z}$, where σ_j are the Pauli matrices, \mathbf{z} is a unit vector in the c axis of SRO and $e^{i\gamma} = \bar{k}_x + i\bar{k}_y$. The wavenumber in x and y direction on the Fermi surface are $\bar{k}_x = k_x/k_F$ and $\bar{k}_y = k_y/k_F$. The current flows in the x direction and the junction is at $x = 0$, where we consider the potential barrier $V_0 \delta(x)$. The spin-orbit scattering is expressed by the Hamiltonian,

$$H_{so} = \frac{-i\hbar^2}{(2mc)^2} \boldsymbol{\sigma} \cdot (\nabla V(\mathbf{r}) \times \nabla). \quad (2)$$

In this study, we express spin-orbit scattering at the junction by the interface term $-iV_s/k_F \delta(x) \partial_y \sigma_3$ since the space-derivative of the barrier-potential only has a x component in the two-dimensional system. The Josephson current is calculated from [17]

$$J = \frac{e}{2} T \sum_{\omega_n} \mathbf{I}, \quad (3)$$

$$\mathbf{I} = \frac{N_c}{2} \int_{-\pi/2}^{\pi/2} d\gamma \text{Tr} [\hat{\Delta}_0 \hat{a}_1 - \hat{\Delta}_0^\dagger \hat{a}_2], \quad (4)$$

where $\hat{\Delta}_0 = \Delta_0 i\sigma 2$ is the pair potential in a s -wave superconductor, \hat{a}_1 and \hat{a}_2 are the Andreev reflection coefficients from the electron (hole) branch to the hole (electron) branch, $N_c = Wk_F/\pi$ is the number of propagating channels on the Fermi surface, and W is the width of the junction. In the limit of high potential barrier ($z_0 = mV_0/k_F \gg 1$), we obtain

$$\mathbf{I} = \frac{-2N_c \Delta_p \cos \varphi}{z_0^4 \Omega_0} \int_{-\pi/2}^{\pi/2} d\gamma \cos^2 \gamma \times \frac{z_0 z_s \Omega_0 \Omega_p \sin^2 \gamma + \Delta_0 \Delta_p \cos^2 \gamma \sin \varphi}{\omega_n^2 + \Delta_p^2 \sin^2 \gamma}, \quad (5)$$

where $\Delta_0(\Delta_p)$ is the amplitude of the pair potential in S (SRO), $\Omega_{0(p)} = \sqrt{\omega_n^2 + \Delta_{0(p)}^2}$, and $z_s = mV_s/k_F$ represents a strength of the spin-orbit scattering. In the absence of the spin-orbit scattering, the Josephson current is not proportional to $\sin \varphi$ but proportional to $\sin 2\varphi$ as shown in the second term in Eq. (5). This is because the wavefunction of the Cooper pair in spin-singlet superconductors and that in spin-triplet superconductors are orthogonal to each other. In the presence of the spin-orbit scattering at the junction interface, a term proportional to $\cos \varphi$ appears in the Josephson current as shown in the first term of Eq. (5). This apparent shift of the Josephson phase φ by $\pi/2$ appears due to the fact that the Josephson coupling mediated by spin-orbit scattering involves the transverse p-wave pairing component (here k_y) only which has a phase of $\pi/2$ in our definition. Thus the stable

junction is reached at $\varphi_0 = \pi/2$. When $\gamma = 0$, we note that the denominator of Eq. (5) goes to zero in the limit of the zero temperature. This is because that the zero-energy resonance states [20–23] are formed at the interface for quasiparticles with perpendicular injection to the interface. It is expected that the temperature dependence of the Josephson current is seriously influenced by this state [18,19,21–23]. In the forthcoming paper, we would like to clarify this in detail.

References

- [1] M. Sigrist and K. Ueda: Rev. Mod. Phys. **63** (1991) 239.
- [2] Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz and F. Lichtenberg: Nature **372** (1994) 532.
- [3] M. Yamashiro, Y. Tanaka and S. Kashiwaya: Phys. Rev. B **56** (1997) 7847.
- [4] C. Honerkamp and M. Sigrist: J. Low. Temp. Phys. **111** (1998) 895.
- [5] M. Yamashiro, Y. Tanaka and S. Kashiwaya: J. Phys. Soc. Jpn. **67** (1998) 3364.
- [6] N. Yoshida, Y. Tanaka, J. Inoue and S. Kashiwaya, J. Phys. Soc. Jpn. **68** (1999) 1071.
- [7] T. Hirai, N. Yoshida, Y. Tanaka, J. Inoue and S. Kashiwaya, J. Phys. Soc. Jpn. **70** (2001) 1885.
- [8] R. Jin, Y. Liu, Z. Q. Mao and Y. Maeno: Europhys. Lett. **51** (2000) 341.
- [9] A. Sumiyama, T. Endo, Y. Oda, Y. Yoshida, A. Mukai, A. Ono and Y. Onuki: Physica C **367** (2002) 129.
- [10] M. Yamashiro, Y. Tanaka and S. Kashiwaya: J. Phys. Soc. Jpn. **67** (1998) 3364.
- [11] Y. Hasegawa, K. Machida and M. Ozaki: J. Phys. Soc. Jpn. **69** (2000) 336.
- [12] Y. Tanaka and S. Kashiwaya, J. Phys. Soc. Jpn. **68** (1999) 3485.
- [13] Y. Tanaka and S. Kashiwaya, J. Phys. Soc. Jpn. **69** (2000) 1152.
- [14] C. Honerkamp and M. Sigrist: Prog. Theor. Phys. **100** (1998) 53.
- [15] V.B. Geshkenbein and A.I. Larkin, Pis'ma Zh. Eksp. Teor. Fiz. **43**, 306 (1986) [JETP Lett. **43**, 395 (1986)].
- [16] A. Millis, D. Rainer, and J. A. Sauls, Phys. Rev. B **38**, 4504 (1988).
- [17] Y. Asano: Phys. Rev. B **64** (2001) 224515.
- [18] Y. S. Barash, H. Burkhardt and D. Rainer: Phys. Rev. Lett. **77** (1996) 4070.
- [19] Y. Asano: J. Phys. Soc. Jpn. **71** (2002) to be published.
- [20] Y. Tanaka and S. Kashiwaya: Phys. Rev. Lett. **74** (1995) 3451.
- [21] Y. Tanaka and S. Kashiwaya: Phys. Rev. B **53** (1996) 11957.
- [22] Y. Tanaka and S. Kashiwaya: Phys. Rev. B **56** (1997) 892.
- [23] S. Kashiwaya and Y. Tanaka: Rep. Prog. Phys. **63** (2000) 1641.