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Abstract

The Josephson effect in s-wave superconductor / insulator/ SmRuO4 (S/I/SRO) junctions is studied. We focus
on influences of spin-orbit scattering at the junction interface on the phase-current relation ship in the Josephson
current. In the presence of the spin-orbit scattering, we find that the Josephson current has a term which is
proportional to cos ¢, where ¢ is the phase-difference between S and SRO.
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1. Introduction

The anisotropic superconductivity has been an
important topics in condensed matter physics since
unconventional superconductivity was discovered in
heavy-fermion materials [1]. Anisotropic superconduc-
tivity was found in the layered perovskite SroRuOg4
(SRO) in a recent study [2]. Stimulated by the sug-
gested triplet pairing symmetry, several studies on
transport properties have been performed [3-7]. The
Josephson effect between different superconductors of
opposite parity, i.e. Josephson current between s-wave
superconductors and SRO, have been studied both
theoretically and experimentally [8-14]. In general,
there is no first order Josephson coupling between
spin-singlet and spin-triplet superconductors when
the spin-flip transmission is absent [1,15-17]. In the
experiment [8], however, Josephson current was ob-
served when the ¢ axis of SRO is parallel to the junc-
tion interface. This is because the potential step near
the insulators become a source of the spin-orbit cou-
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pling [15]. The Josephson current between two SRO’s
was also theoretically studied [18,19].

In general the Josephson current can be decomposed
into a series of

o o]

J= Z(an cosny + by sinny), (1)

n=1

where ¢ is the phase-difference between two super-
conductors. In a presence of the time-reversal symme-
try, in general, the Josephson current becomes an odd
function of ¢, i.e., ap, = 0. In general SIS junctions,
J o sin ¢ because b,, n > 2 are much smaller than
b1. However, in S/I/SRO junctions, it is known that b
vanishes because the wavefunction of the Cooper pairs
in two superconductors are orthogonal to each other.
Thus the Josephson current is proportional to sin 2¢ in
the absence of the spin-orbit scattering. In the presence
of the spin-orbit scattering, a coefficient a; or b1 may
remain finite [1,15-17]. In this paper, we show that a;
becomes finite in S/I/SRO junctions.
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2. Effect of spin-orbit scattering

We consider S/I/SRO junctions in two-dimensional
space which corresponds to the ab-plane in SRO. The
pair potential in SRO is given by Ap = id - o2 with
d = Ape’"z, where o; are the Pauli matrices, z is a
unit vector in the c axis of SRO and ¢'” = ky +ik,. The
wavenumber in x and y direction on the Fermi surface
are ky = kz/kr and ky, = ky/kr. The current flows in
the x direction and the junction is at z = 0, where we
consider the potential barrier Vpd(z). The spin-orbit
scattering is expressed by the Hamiltonian,

.22
%a L(VV(r) x V). 2)
In this study, we express spin-orbit scattering at the
junction by the interface term —iV; /krd(z)0yos since
the space-derivative of the barrier-potential only has
a x component in the two-dimensional system. The
Josephson current is calculated from [17]

Hso =

(&

J ZETZ I, 3)
N, /2 R N

I1=—" dyTr [A0&1 - A(T)&z] ) (4)
2 —m/2

where Ag = Agio?2 is the pair potential in a s-wave
superconductor, ai; and az are the Andreev reflection
coefficients from the electron (hole) branch to the hole
(electron) branch, N, = Wkp /7 is the number of prop-
agating channels on the Fermi surface, and W is the
width of the junction. In the limit of high potential
barrier (zo = mVy/kr >> 1), we obtain

I— —2N:A, cos p /"/2

I dvy cos® v
ZOQO —7/2

 Z0%s Q09 sin? v 4+ AgA, cos® ysin ¢

)

w2 + AZsin? y
where Ag(A,) is the amplitude of the pair potential

in S (SRO), Qopy = /w2 + Ag(p), and zs = mVs/kp

represents a strength of the spin-orbit scattering. In
the absence of the spin-orbit scattering, the Joseph-
son current is not proportional to sin¢ but propor-
tional to sin 2¢ as shown in the second term in Eq. (5).
This is because the wavefunction of the Cooper pair
in spin-singlet superconductors and that in spin-triplet
superconductors are orthogonal to each other. In the
presence of the spin-orbit scattering at the junction
interface, a term proportional to cos ¢ appears in the
Josephson current as shown in the first term of Eq. (5).
This apparent shift of the Josephson phase ¢ by /2
appears due to the fact that the Josephson coupling
mediated by spin-orbit scattering involves the trans-
verse p-wave pairing component (here k) only which
has a phase of 7/2 in our definition. Thus the stable

junction is reached at @9 = w/2. When v = 0, we note
that the denominator of Eq. (5) goes to zero in the limit
of the zero temperature. This is because that the zero-
energy resonance states [20-23] are formed at the in-
terface for quasiparticles with perpendicular injection
to the interface. It is expected that the temperature
dependence of the Josephson current is seriously influ-
enced by this state [18,19,21-23]. In the forthcoming
paper, we would like to clarify this in detail.
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