

Magnetic anisotropy of the heavy fermion state in $\text{PrFe}_4\text{P}_{12}$

Takahiro Namiki^{a,1}, Yuji Aoki^a, Tatsuma D. Matsuda^a Hitoshi Sugawara^a Hideyuki Sato^a

^a Department of Physics, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan

Abstract

We report the magnetic field dependence of specific heat on single crystalline $\text{PrFe}_4\text{P}_{12}$ measured in fields applied along the three main symmetry directions $\langle 100 \rangle$, $\langle 110 \rangle$, and $\langle 111 \rangle$. The electronic thermal excitation in the high-field heavy-fermion state is found to be strongly enhanced for fields along the $\langle 111 \rangle$ direction.

Key words: heavy fermion behavior; filled skutterudites; $\text{PrFe}_4\text{P}_{12}$; specific heat

Recently it has been confirmed that a filled skutterudite $\text{PrFe}_4\text{P}_{12}$ has a rare $4f^2$ -based heavy fermion (HF) state in high magnetic fields where a non-magnetic ordered state (ODS), appearing below $T_A = 6.5$ K in zero field, is suppressed. The HF state is evidenced by largely enhanced values of electronic specific-heat-coefficient ($\gamma \sim 1 \text{ J/K}^2\text{mol}$) [1,2] and cyclotron mass in dHvA studies [3]. Non-magnetic nature of the ODS has been revealed by nuclear scattering and ^{141}Pr -nuclear specific heat studies [4,5]. A possible order parameter of the ODS is an antiferro-quadrupole (AFQ) with $\mathbf{q} = [1, 0, 0]$ [6], which couples to the observed lattice distortion [7] and consequently to the expected Fermi surface instability [8]. In this scenario, a gap opening, which is suggested from the electrical resistivity $\rho(T)$ and Hall coefficient $R_H(T)$ [9], and a field-induced staggered magnetic component observed in neutron scattering experiments [10] can be naturally understood. This scenario might point to a possibility that fluctuations of the quadrupole moments are essential for the HF behavior in the high-field HF state.

In this paper, we report further detailed specific heat measurements in applied magnetic fields along the three main symmetry directions $\langle 100 \rangle$ (easy direction), $\langle 110 \rangle$, and $\langle 111 \rangle$ (hard direction). The results reveal that the electronic thermal excitation in the high-field

HF state has a strong magnetic anisotropy. For all the measurements, we used the same single crystal grown by Sn-flux method (see Ref. [9]). The observation of dHvA signals on samples grown in the same batch confirms high-quality of the present sample. Specific heat $C(H, T)$ is measured by a quasiadiabatic heat pulse method described in Ref. [11] using a dilution refrigerator equipped with an 8T superconducting magnet.

Figure 1 (a) shows the magnetic field dependences of C/T at $T = 1.01$ K in applied magnetic fields along the $\langle 100 \rangle$, $\langle 110 \rangle$, and $\langle 111 \rangle$ crystallographic directions. At this temperature, the phonon contribution of the order of $10^{-4} \text{ J/K}^2\text{mol}$ estimated from the specific heat data for $\text{LaFe}_4\text{P}_{12}$ [12] is negligibly small. The phase boundary of the ODS is magnetically anisotropic; the transition field $H_A = 4.0, 5.4$, and 6.5 T for $H \parallel \langle 100 \rangle$, $H \parallel \langle 110 \rangle$, and $H \parallel \langle 111 \rangle$. In the ODS ($H < H_A$), C/T is suppressed and weakly field dependent except for fields close to H_A ; $C/T = 0.18 \text{ J/K}^2\text{mol}$ in zero field and gradually decreases with increasing field showing a shallow minimum around $2 \sim 4$ T. At $H = H_A$, a sharp jump in C/T is observed, reflecting the first-order nature of the phase transition. Because of relatively large step of the field change ($\Delta H = 0.1$ T) in the field scan measurements, sharp peak structure associated with a release of the latent heat at the phase transition was undetectable, while in the temperature-dependence measurement for $H \parallel \langle 100 \rangle$ a pronounced peak with a maximum of $C/T \simeq 25 \text{ J/K}^2\text{mol}$ at 1.31

¹ Corresponding author. Present address: Dept. of Physics, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan E-mail: namiki@comp.metro-u.ac.jp

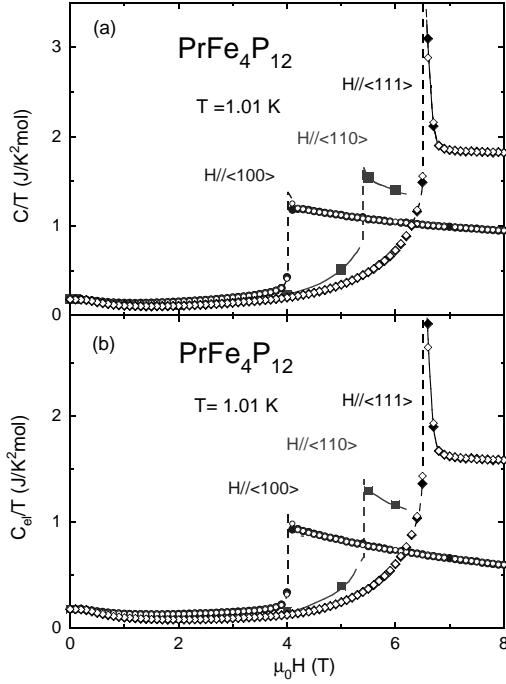


Fig. 1. (a) Magnetic field $\mu_0 H$ dependences of specific heat divided by temperature C/T in applied fields along the three main symmetry directions. The data of closed (open) symbol were obtained with increasing (decreasing) H ; no appreciable hysteretic behavior is visible. The data for $H \parallel \langle 100 \rangle$ and $H \parallel \langle 110 \rangle$ are partly from Ref. [2] and Ref. [1], respectively. (b) Estimated electronic specific heat divided by temperature C_{el}/T as a function of $\mu_0 H$. The lines are guide to the eye.

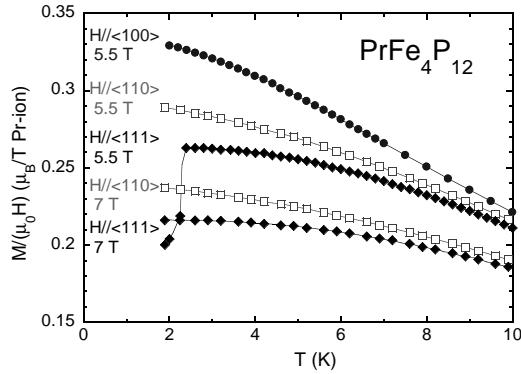


Fig. 2. Temperature dependence of magnetization divided by applied magnetic field $M/(\mu_0 H)$.

K was observed [2]. Remarkable feature in $H > H_A$ is the substantial difference in C/T among the applied field directions.

For quantitative analyses of the electronic contribution, the nuclear contribution C_n mostly caused by ¹⁴¹Pr nuclei (nuclear spin $I = 5/2$ for ¹⁴¹Pr with the natural abundance of 100%) should be subtracted. We have experimentally demonstrated in Ref. [2] that the

size of the Pr magnetic moment and C_n are coupled through the strong intrasite hyperfine interaction, leading to the largely enhanced Pr nuclear Schottky contribution. Using the coupling constant determined in Ref. [2], C_n can be estimated by bulk magnetization M measurements. An error of $\sim 3\%$ in M , inevitably caused by an extrapolation to low temperatures since the present M data are limited for $T > 1.9$ K, leads to negligibly small error in C_{el}/T .

The resulting C_{el}/T vs H curves are shown in Fig. 1 (b). The data in the HF state are substantially anisotropic. In 8 T, C_{el}/T for $H \parallel \langle 111 \rangle$ is about three times larger than for $H \parallel \langle 100 \rangle$. With increasing field, C_{el}/T is largely suppressed for $H \parallel \langle 100 \rangle$ but not for $H \parallel \langle 111 \rangle$. The C_{el}/T -vs- H data are connected to the temperature dependence of M by the Maxwell relation

$$[\partial(C_{\text{el}}/T)/\partial(\mu_0 H)]_T = [\partial^2 M/\partial T^2]_H. \quad (1)$$

Qualitative agreement is found with the $M(T)$ data shown in Fig. 2; distinct $\partial^2 M/\partial T^2 < 0$ is observed for $H \parallel \langle 100 \rangle$ while M loses its temperature dependence at low temperatures for $H \parallel \langle 111 \rangle$. Therefore, the present observation suggests that the significantly-enhanced electronic thermal excitation observed in the HF state for $H \parallel \langle 111 \rangle$ (hard direction) might be of non-magnetic origin.

This work was supported partly by a Grant-in-Aid for Scientific Research from MEXT of Japan and by the REIMEI Research Resources of JAERI.

References

- [1] T. D. Matsuda *et al.*, Physica B **281&282** (2000) 220.
- [2] Y. Aoki *et al.*, Phys. Rev. B **65** (2002) 064446.
- [3] H. Sugawara, *et al.*, J. Magn. Magn. Matter. **226-230** (2001) 48.
- [4] L. Keller *et al.*, J. Alloys Compd. **323-324** (2001) 516.
- [5] Y. Aoki *et al.*, Physica B **312-313C** (2002) 823.
- [6] S. H. Curnoe *et al.*, Physica B **312-313C** (2002) 837.
- [7] K. Iwasa *et al.*, Physica B **312-313C** (2002) 834.
- [8] H. Harima *et al.*, Physica B **312-313C** (2002) 843.
- [9] H. Sato *et al.*, Phys. Rev. B **62** (2000) 15125.
- [10] L. Hao *et al.*, presented in SCES2002 conference.
- [11] Y. Aoki *et al.*, J. Magn. Magn. Matter. **177-181** (1998) 271.
- [12] G. P. Meissner, G. R. Stewart, in *Proceedings of the 17th International Conference on Low Temperature Physics*, edited by U. Eckern, A. Schmid, W. Wever, W. Wuhl, (Elsevier, Amsterdam, 1984) 711.