

Magnetic excitations in the high-temperature phase of α' -NaV₂O₅

Tetsuo Ohama^{a,1}, Masahiko Isobe^b, Yutaka Ueda^b

^a Graduate School of Science and Technology, Chiba University, Chiba 263-8522, Japan

^b Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan

Abstract

We measured the ⁵¹V nuclear spin relaxation rate in the high-temperature phase of the quarter-filled ladder compound α' -NaV₂O₅. We compare the results with theories for the spin- $\frac{1}{2}$ Heisenberg chain and find no serious discrepancies between them.

Key words: α' -NaV₂O₅; NMR; charge ordering; spin excitation

α' -NaV₂O₅ is known to show a charge ordering at $T_C \sim 34$ K which involves valence change of V ions as $2V^{4.5+} \rightarrow V^{4+} + V^{5+}$ [1]. This charge ordering is an insulator-insulator transition [2]; the insulating behavior in the high-temperature phase was explained by the anisotropic electronic hopping amplitude ($t_{\perp} \gg t_{\parallel}$) in a quarter-filled ladder [3,4]. In the anisotropic limit, one electron occupies a V-O-V molecular orbital on a rung, and the system becomes equivalent to one-dimensional chains. Indeed, the magnetic susceptibility has temperature dependence similar to that of the spin- $\frac{1}{2}$ Heisenberg chain with $J \sim 560$ K [5].

In α' -NaV₂O₅, the anisotropy of the hopping amplitude is not very large, and the inter-site Coulomb repulsion, which is responsible for the charge ordering, is important for the optical properties even in the high-temperature phase [6,7]. Thus the charge fluctuations on the rungs are not small, and it is an open question why the magnetic properties is similar to the spin- $\frac{1}{2}$ Heisenberg chain. In this paper, we report the ⁵¹V nuclear spin relaxation rate ($1/T_1$) in the high-temperature phase. We compare the experimental result with the theoretical calculation for the spin- $\frac{1}{2}$ Heisenberg chain, and discuss the difference in the magnetic excitations between α' -NaV₂O₅ and the spin- $\frac{1}{2}$ Heisenberg chain.

¹ E-mail:ohama@physics.s.chiba-u.ac.jp

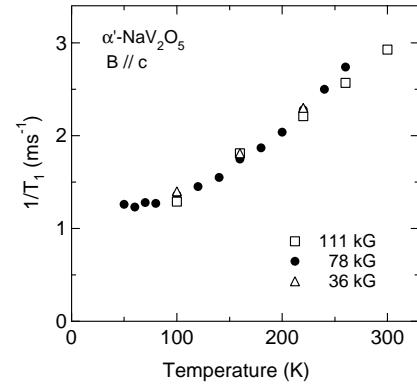


Fig. 1. Temperature dependence of the anisotropy of $1/T_1$ for $B = 36, 78, 111$ kG along a axis.

The relaxation rate was measured with a magnetically-aligned powder sample for $B \parallel c$ and a single-crystalline sample for the magnetic field $B \parallel a$. We show the temperature dependence of $1/T_1$ for $B \parallel c$ and the anisotropy of $1/T_1$ in Fig. 1 and 2, respectively.

As shown in Fig. 2, the ratio of $1/T_1$ for $B \parallel a$ to that for $B \parallel c$ is almost temperature-independent (~ 5.0). If the off-diagonal elements of the hyperfine coupling tensor $A_{\alpha\beta}$ and the supertransferred hyperfine coupling from the nearest neighbor V sites are negligible, this ratio is given by

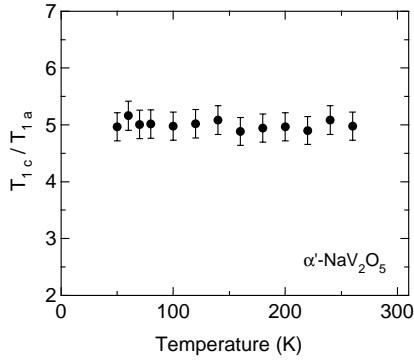


Fig. 2. Temperature dependence of the anisotropy of $1/T_1$.

$$\left(\frac{1}{T_1}\right)_a / \left(\frac{1}{T_1}\right)_c = \frac{A_b^2 + A_c^2}{A_b^2 + A_c^2}. \quad (1)$$

The experimental result of the hyperfine coupling, $A_a = -4.4 \times 10^{-19}$, $A_b = -2.9 \times 10^{-19}$, and $A_c = -14.8 \times 10^{-19}$ erg [1,8], gives the ratio 8.2. This disagreement may indicate that the assumption on the hyperfine coupling is wrong. Since A_c is much larger than A_a and A_b , and is dominated by the diagonal contact interaction, it is reasonable to assume that $(1/T_1)_a \propto (A_b^2 + A_c^2)$ in the comparison with the theories.

The dynamics of the spin- $\frac{1}{2}$ Heisenberg chain has been well understood recently with field theory and numerical calculation. At high temperatures, the dynamical structure factor grows sharply as $k \rightarrow 0$ and $\omega \rightarrow 0$. At low temperatures, on the other hand, spectral weight around $k \sim \pi$ is dominant [9]. To compare the experimental results with the theories, we define the normalized dimensionless relaxation rate as

$$\left(\frac{1}{T_1}\right)_{\text{norm}} = \frac{2\hbar J}{A_b^2 + A_c^2} \left(\frac{1}{T_1}\right)_a \quad (2)$$

with $J \sim 560$ K. The $k \sim \pi$ contribution to $1/T_1$, which is dominant at low temperatures, is given by

$$\left(\frac{1}{T_1}\right)_{\text{norm}} \cong 2D \sqrt{\ln \frac{\Lambda}{T} + \frac{1}{2} \ln \left(\ln \frac{\Lambda}{T}\right)}, \quad (3)$$

where $D = (2\pi)^{-3/2}$, $\Lambda = 2\sqrt{2\pi}e^{C+1}J$, and C is Euler's constant [10]. This result contains no adjustable parameters.

In Fig. 3, the experimental result is shown with the theoretical one. Below $T \sim 0.2J$, $1/T_1$ is almost temperature independent and near the theoretical value. At higher temperatures, $1/T_1$ increases noticeably, although the theoretical $1/T_1$ decreases slowly. This discrepancy can be due to the $k \sim 0$ contribution to $1/T_1$. This ferromagnetic mode often has diffusive behavior, which leads to strong magnetic field dependence of $1/T_1$. However, as shown in Fig. 1, at high temperatures above 150 K, where $1/T_1$ increases remarkably,

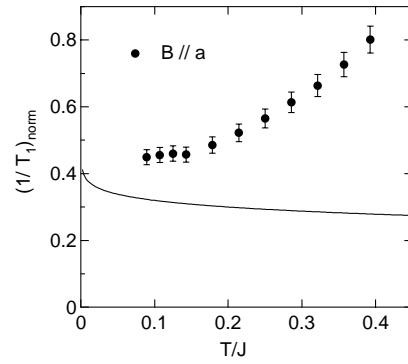


Fig. 3. Normalized relaxation rates. Closed circle shows experimental results for $B \parallel a$, and solid line does theoretical results.

it depends only weakly on the magnetic field. If the supertransferred coupling is significant, the couplings for the $k \sim 0$ and $\sim \pi$ modes become different. Then the anisotropy of $1/T_1$ should change, when the $k \sim 0$ mode grows with temperature. But this is not the case. Quantum Monte Carlo calculations of $1/T_1$ show only weak temperature dependence below $T \sim 0.5J$ [9]. Only from the present results, it is unclear that the observed dynamics is understood as that of the spin- $\frac{1}{2}$ Heisenberg chain.

Another possible origin of the discrepancy at high temperatures is the effect of charge fluctuation. Recently, a theoretical study on quarter-filled ladders suggests that strong charge fluctuation modifies the magnetic excitations from those of the Heisenberg chain [11], but it is unknown how it does in detail.

In summary, we measured $1/T_1$ in high-temperature phase of α' -NaV₂O₅ and compared the results with theories for the spin- $\frac{1}{2}$ Heisenberg chain. We found no serious discrepancy between them, but further experimental and theoretical studies are desirable to obtain clear conclusions.

References

- [1] T. Ohama *et al.*, Phys. Rev. B **59** (1999) 3299.
- [2] M. Isobe *et al.*, J. Alloys Compounds **262-263** (1997) 180.
- [3] H. Smolinski *et al.*, Phys. Rev. Lett. **80** (1998) 5164.
- [4] P. Horsch, F. Mack, Eur. Phys. J B **5** (1998) 367.
- [5] M. Isobe, Y. Ueda, J. Phys. Soc. Jpn. **65** (1996) 1178.
- [6] S. Nishimoto, Y. Ohta: J. Phys. Soc. Jpn. **67** (1998) 4010.
- [7] A. Damascelli *et al.*, Phys. Rev. B **61** (2000) 2535.
- [8] T. Ohama *et al.*, J. Phys. Soc. Jpn. **66** (1997) 3008.
- [9] O. A. Starykh *et al.*, Phys. Rev. B **55** (1997) 14953.
- [10] V. Barzykin: Phys. Rev. B **63** (2001) 140412(R).
- [11] T. Nakaegawa, Y. Ohta, cond-mat/0204165.