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Abstract

We study both classical and quantum transports in two dimensional electron gas (2DEG) numerically, where
magnetic fields are applied perpendicular to the plane of 2DEG and are periodically modulated. Due to the non-
homogeneous magnetic fields, the system becomes chaotic. In the classical model, we show the commensurability
oscillation of magnetoresistance in periodic magnetic fields. The negative magnetoresistance is observed when the
conductivity σxx is small. The quantum transport is also investigated, and the universal conductance fluctuations
as well as the fractal behavior of the magnetoconductance are observed.
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1. Introduction

We numerically investigate both classical and quan-
tum transport properties in the presence of periodically
modulated magnetic fields. The system with periodic
modulation of magnetic fields is a kind of chaotic sys-
tem, and various interesting phenomena which origi-
nate from the chaoticity are observed [1]. Applying pe-
riodic fields is an easier way to realize chaotic systems
than fabricating the geometry of samples, and further-
more, we can observe peculiar effects which are differ-
ent from systems in chaotic geometries. In the classi-
cal model, we adopt and use the Kubo formula to ob-
tain the transport coefficients. We found the commen-
surability effect similar to the antidot systems [2]. In
ref.3, the average of the modulated fields BM is posi-
tive. New features appear when the average of BM is
vanishing, which is discussed below. In the quantum
model, we use tight-binding model and study the en-
ergy level statistics and the two terminal conductance.
To calculate energy level statistics, we diagonalize the
Hamiltonian by the Householder method. The distri-
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bution function P (s) of adjacent level spacing shows
peculiar behavior different from disordered systems in
uniform magnetic fields. The two terminal conductance
given by Landauer formula is calculated using recur-
sive Green’s function method [4].

2. Classical Transport

Besides an external uniform magnetic field BU, the
periodically modulated magnetic fields BM are applied
perpendicular to the plane of 2DEG. We assume mod-
ulated magnetic fields BM to be

BM(x,y) = B0
M[sin(πx/a0) sin(πy/a0)]

α, (1)

where α controls the steepness of modulation. The fac-
tor B0

M in eq.(1) determines the maximum value of the
modulated magnetic field, a0 is periodicity of modula-
tion. We ignore inelastic scattering mechanism in this
system. We use Kubo formula

σij ∝
∞∫

0

e−t/τ 〈vi(t0 + t)vj(t0)〉dt (2)
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to obtain the conductivity. In Fig. 1 results in the case
of α = 1 for the longitudinal resistance ρxx as a func-
tion of the externally applied field BU are shown. When
the resistance at BU = 0 is large, we observe negative
magnetoresistance.
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Fig. 1. Magnetoresistance ρxx in the case of α = 1. The solid

line corresponds to B0
M = 1.4, the dotted B0

M = 1.6, and

the dashed B0
M = 1.8. The magnetoresistance is normalized

by the longitudinal resistance ρ0 in zero field and the mag-

netic field is normalized by commensurability magnetic field

B0 = 2m∗vF/ea0, m∗ being the effective mass and vF the

Fermi velocity.

3. Quantum Transport

The quantum transport in a chaotic system has been
attracting great interests. We now discuss the quantum
transport in the presence of periodic magnetic fields.
To describe the two dimensional electron system with
periodically modulated magnetic fields, we use the fol-
lowing tight-binding Hamiltonian.

H = −
∑
〈i,j〉

Vi,jC
†
i Cj , Vi,j = t exp[iθi,j] (3)

We assume a square lattice periodically modulated
magnetic field BM as in eq.(1) and use two approaches
to study this system. One is the energy level statistics
in the isolated system obtained by the direct diagonal-
ization of the Hamiltonian matrices. The P (s) shows
GOE behavior in the presence of spatial symmetry and
GUE in the absence of it. We also study the two ter-
minal conductance in open systems. Leads with width
W are attached at opposite corner of the square re-
gion. To calculate conductance in this system, we use
Landauer formula given by

G =
e2

πh̄

∑
µν

|tµν |2 (4)

Fig.2 shows conductance G(BM) calculated by eq.(4)
as a function of BM in units of the correlation field
Bξ. We obtain universal conductance fluctuations in
periodically modulated magnetic field. The variance of
the conductance in the chaotic system is VarG/G0 =
1/8β. Our results are consistent with this. With spatial
symmetry, the system belongs to the orthogonal class,
while the system belongs to the unitary class when the
modulation field is no longer symmetric.
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Fig. 2. Conductance fluctuation as a function of BM. The

system size L = 100, width of lead W = 10, and EF/t = 0.95.

The conductance is scaled by conductance quantum 2e2/h

and the magnetic field is scaled by correlation field Bξ. The

modulated magnetic fields are not symmetric.

4. Summary

To summarize, we have studied the transport prop-
erties in two dimensional periodically modulated mag-
netic fields by numerical simulation. In the classical
model, we show the commensurability oscillation of
magnetoresistance and the negative magnetoresistance
at low external field. In the quantum model, we have
examined the conductance fluctuations. The parity of
the modulation parameter α and the spatial symme-
try of the modulated fields characterizes the transport
properties of this system.
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