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Abstract

Large-scale simulations have been performed in the current-driven two-dimensional XY gauge glass model with
resistively-shunted junction dynamics, by means of a very effecient algorithm proposed before. It is found that
the linear resistivity at low temperatures tends to zero, which indicates a finite temperature glass transition.
Dynamical scaling analysis demonstrates that a nearly pefect collapse of current-voltage data can be achieved with
the transition temperature Tc = 0.22 (in units of the Josephson coupling strength), dynamical critical exponent
z = 2.0, and the static exponent ν = 1.2, which agrees quite well with recent findings by an equilibrium Monte
Carlo simulations and finete-size scaling analysis in RSJ simulations.
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1. Introduction

The vortex glass phase [1] in high-Tc cuprates has
attracted considerable attention both experimentally
and theoretically. It is of practical significance that the
vortex glass phase is a truly superconducting phase
with zero linear resistivity. On the theoretical side,
the gauge XY glass model [2] is believed to be in the
same universal class as the vortex glass. In three di-
mensions, there is a growing consensus that the gauge
glass model exhibits the finite-temperature glass tran-
sition [2–4]. However, in two dimensions (2D), exper-
imental quest of the vortex glass transition in high-
Tc cuprate films [5,6] and numerical simulations [7–11]
in gauge glass model have provided continuous excite-
ment and puzzles for theorists. Zero-temperature nu-
merical domain wall renormalization group study pre-
dicted that there is no ordered phase at any finite tem-
perature in 2D [7]. On the other hand, the finite tem-
perature transition has also been reported from ex-
tensive resistively-shunted junction (RSJ) [9,10] and
Monte Carlo simulations [11]. Therefore, the existence
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of finite-temperature glass transition in 2D remains a
topic of controversy.

In this work, we perform large-scale RSJ dynami-
cal simulations in the 2D XY gauge glass model. The
Hamiltonian is given by

H = −J0

∑
〈ij〉

cos(φi − φj − Ai,j). (1)

where φi specifies the phase of the superconducting or-
der parameter on grain i, J0 denotes the strength of
Josephson coupling between neighboring grains, and
the quenched variable Ai,j is distributed uniformly on
the interval [−π, π). The sum is over all nearest neigh-
bor pairs on a 2D square lattice.

The dynamical equations for the φ’s are readily de-
rived by requiring the sum of currents into each grains
to vanish. Realizing that the sum of supercurrents into
grain i can be expressed in terms of the derivative of
H with respect to φi, we obtain,

σh̄

2e

∑
j∈nn of i

(
dφi

dt
− dφj

dt

)
= −2e

h̄

∂H

∂φi
+ Jext,i

−
∑

j∈nn of i

ηij . (2)
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Fig. 1. Dynamical scaling plot of current-voltage data at vari-

ous temperatures for Ly = 512 .

Here Jext,i is the external current which vanishes
except for the boundaries. The ηij is the ther-
mal noise current with zero mean and a correlator
〈ηij(t)ηij(t

′)〉 = 2σkBTδ(t − t′). In the following, the
units are taken of 2e = J0 = h̄ = σ = 1.

In our simulation, the network is chosen to be a
strip of Lx with Ly nodes in each column. A uniform
external current Ix along x-direction is injected into
each node and the periodic boundary condition is em-
ployed in the transverse y-direction. The above equa-
tion can be solved efficiently by pseudo-spectral algo-
rithm. The time stepping is done using a second-order
Runge-Kutta scheme with ∆t = 0.05. The detailed de-
scription of this method has been given in Ref. ([12]).
To avoid boundary effect, we typically choose Ly =
512, Lx = 512 + 2 × 128 and discard 128 columns at
each end. We have checked that the finite-size effects
on our IV data is convincingly excluded.

2. Simulation results and discussions

We have obtained the resistivity R = V/I as a func-
tion of current I at various temperatures. In lower tem-
peratures, resistivity tends to zero as the current de-
creases. It follows that there is a true superconducting
phase with zero linear reisitivity in low temperature.

In analyzing the glass transition from a vortex liq-
uid with ohmic resistance to a superconducting vortex
glass state, Fisher, Fisher, and Huse (FFH) [1] pro-
posed the following dynamic scaling ansatz,

V = Iξd−2−zΨ±(Iξd−1). (3)

Here d is the dimension of the system, z is the dynamic
exponent at the transition, and ξ =| T − Tc |ν is the
correlation length which diverges at the transition.

We examine the IV data at different temperatures
by this dynamical scaling. As shown in Fig. 1, us-
ing Tc = 0.22 , z = 2.0, and ν = 1.2, an excellent
collapse is achieved, which agrees quite well with re-
cent findings by an equilibrium Monte Carlo simula-
tions[11] and standard finite-size scaling in RSJ simu-
lations with small sample size[10]. We therefore believe
finite-temperature glass transition exist even in 2D.

In summary, we have performed extensive simula-
tions on 2D XY gauge glass model by a very efficient al-
gorithm. A strong evidence for the finite-temperature
transition in 2D is provided. The nature of the low
temperature superconducting phase [13] should be our
future study.

Acknowledgements

The present simulations are performed on the Nu-
merical Materials Simulator (SX-5) of National Insti-
tute of Materials Science, Japan. One of us (QHC) is
financially supported by the JSPS invitation program
and in part by the NSFC under Grant No. 10075039.

References

[1] D. S. Fisher, M. P. A. Fisher, D. A. Huse, Phys. Rev. B

43, 130 (1991).

[2] D. A. Huse, H. S. Seung, Phys. Rev. B 42, 1059 (1990).

[3] R. H. Koch, V. Foglietti, W. J. Gallagher, G. Koren, A.

Gupta, M. P. A. Fisher, Phys. Rev. Lett. 63, 1511 (1989).

[4] T. Giamarch,P. Le Doussal, Phys. Rev. Lett. 72, 1530

(1994); Y Nonomura, X Hu, Phys. Rev. Lett. 86, 5140

(2001).

[5] C. Dekker, P. J. M. Woltgens, R. H. Koch, B. W. Hussey,

A. Gupta, Phys. Rev. Lett. 69, 2717 (1992).

[6] A. Sawa, H. Yamasaki, Y. Mawatari, H. Obara, M. Umeda,

S. Kosaka, Phys. Rev. B 58, 2868 (1998).

[7] M. P. A. Fisher, T. A. Tokuyasu, A. P. Young, Phys. Rev.

Lett. 66, 2931 (1991); J. M. Kosterlitz ,N. Akino, ibid. 81,

4672 (1998).

[8] E. Granato, Phys. Rev. B 58, 11 161 (1998).

[9] Y.-H. Li, Phys. Rev. Lett. 69, 1819 (1992).

[10] B J Kim, Phys. Rev. B B 62, 644(2000).

[11] M. Y. Choi, S. Y. Park, Phys. Rev. B 60, 4070 (1999).

B.J. Kim, M.Y. Choi, S. Ryu, D. Stroud, Phys. Rev. B 56,

6007 (1997).

[12] Q. H. Chen, L. H. Tang, P. Q. Tong, Phys. Rev. Lett. 87,

067001(2001); L. H. Tang and Q. H. Chen, Physica B 279,

227(2000).

[13] H. Nishimori, Physica A 205, 1(1994); Y. Ozeki, H.

Nishimori, J. Phys. A26, 3399(1993).

2


