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Abstract

We study the two-dimensional superfluidity of disordered Bose systems by analyzing the Gross-Pitaevskii equation
with random potential. First, we obtain the ground state and calculate its superfluid density by the linear response
theory. The superfluid density shows their remarkable dependence on the potential amplitude, the healing length
and the density. Secondly, we apply the velocity field to the ground state to observe the breaking of superfluidity
due to the excitation of vortex pairs above a critical velocity.
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1. Introduction

Bose system in random environment is a significant
problem for understanding not only the effect of dis-
order on its long-range order but also the long-range
order itself, for example, the relation between Bose-
Einstein condensation (BEC) and superfluidity. The
experimental study of the problem has been made in
liquid 4He in porous Vycor glass[1], being proposed re-
cently in alkali atomic BEC in a random optical trap[2].
There are a few theoretical studies like, for example, the
Bose-Hubbard model[3]. This model describes the be-
havior of the amplitude of the macroscopic wave func-
tion of BEC in random environment, showing many
interesting phenomena about dirty Bose system.

In this work, we study a two-dimensional disordered
Bose system by using the Gross-Pitaevskii equa-
tion[4,5] with random potential. This model enables
us to understand the effect of the random potential
on both the amplitude and the phase of the macro-
scopic wave function, which lacks in the study with
the Bose-Hubbard model. We can also investigate the
dynamics of the system such as nucleation of vortex
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pairs. Our calculation leads to the new development
of dirty Bose system.

2. The Gross-Pitaevskii model with random
potential

The macroscopic wave function for interacting Bose
condensation in the random external potential at the
zero temperature satisfies the Gross-Pitavskii equation

(i − γ)
∂Φ(�)

∂t

=
[
− h̄2∇2

2m
− µ +� ·� + V (�) + g|Φ(�)|2

]
Φ(�), (1)

where Φ(�) is the macroscopic wave function, m is the
mass of a boson, µ is the chemical potential, g is the
coupling constant of the interaction between bosons,
� is the external velocity field and γ is a dissipation
coefficient. We solve numerically this equation for two-
dimensional systems. V (�) is the external random po-
tential. We take the ensemble average with respect to
the random potentials whose peaks have the same char-
acteristic strength and width. The typical random po-
tential is shown in Fig. 1(a). For one random poten-
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tial, we can obtain the corresponding ground state by
finding the steady state of the time dependent Eq. (1)
with γ �= 0. Figure 1(b) is the amplitude of the ground
state for the potential of Fig. 1(a). The condensate is
trapped in the valleys whose widths are larger than the

healing length ξ =
√

h̄2/2mµ among many valleys of
the random potential.

We can calculate the superfluid density of the ground
state by the linear response theory[6]. The superfluid
density is sensitive to the amplitude of the potential,
the healing length ξ and the particle density. Figure 2
shows a dependence of the superfluid density on the
healing length. As ξ is reduced below a critical value,
the superfluid density becomes rapidly small. The short
healing length makes the condensate localize in the
valleys and prevents its extension over the system, thus
depressing the superfluidity

When a velocity field � is applied, the ground state
makes characteristic nonlinear response, such as nucle-
ating vortex pairs above an critical velocity field. Fig-
ure 3(a) and (b) shows the amplitude and phase, re-
spectively, when a vortex pair is nucleated. In Fig. 3(a),
the amplitude becomes very small in the black region,
and in Fig. 3(b), the value of the phase varies continu-
ously from −π(black) to π(white). The phase changes
by 2π around the points shown by arrows; these points
are vortices, where the density is very small in Fig. 3(a)
The vortices move along the region with the small am-
plitude. The appearance of vortices complicates the
space structure of the phase, thus suppressing the su-
perfluidity considerably.

The detailed studies of this system are now in
progress.
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Fig. 1. One sample of random potential (a) and the ground state

(b) for the potential. Characteristic strength of the random

potential is V̄ = 25µ, where V̄ is the spatial averaged value of

V (x). The healing length is ξ = λ, where λ is the characteristic

width of the random potential.

Fig. 2. The healing length dependence of the superfluid density.

ρ is the density and ρs is the superfluid density. We take

one hundred ensemble average for the same strength V̄ of the

random potential.
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Fig. 3. The amplitude(a) and phase(b) of the wave function at

t = 2.75h̄/µ and v = 0.8
√

µ/2m, where initial t = 0 condition

is Fig. 1(b). In (a), the amplitude becomes very small in the

black region. In (b), the value of the phase varies continuously

from −π(black) to π(white).
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