

Re-appearance of antiferromagnetic ordering with Zn and Ni substitution in $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$

T. Machi ^{a,1}, I. Kato ^b, R. Hareyama ^b, N. Watanabe ^b, Y. Itoh ^c, N. Koshizuka ^a, S. Arai ^b, M. Murakami ^a

^a Superconductivity Research Laboratory, International Superconductivity Technology Center, 1-10-13 Shinonome, Koto-ku, Tokyo 135-0062, Japan

^b Meiji University, 1-1-1 Hogashi-mita, Tama-ku, Kawasaki-shi, Kanagawa 214-0033, Japan

^c Superconductivity Research Laboratory, International Superconductivity Technology Center, and Japan Society for the Promotion of Science, Japan

Abstract

The effects of nonmagnetic Zn and magnetic Ni substitution for Cu site on magnetism are studied by measurements of uniform magnetic susceptibility for lightly doped $\text{La}_{2-x}\text{Sr}_x\text{Cu}_{1-z}\text{M}_z\text{O}_4$ ($\text{M}=\text{Zn}$ or Ni) polycrystalline samples. For the parent $x=0$, Zn doping suppresses the Néel temperature T_N whereas Ni doping hardly changes T_N up to $z=0.3$. For the lightly doped samples with $T_N \sim 0$, the Ni doping recovers T_N . For the superconducting samples, the Ni doping induces the superconductivity-to-antiferromagnetic transition (or crossover). All the heavily Ni doped samples indicate a spin glass behavior at ~ 15 K.

Key words: impurity effect; magnetic susceptibility; $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$; superconductor-to-antiferromagnet crossover

Although nonmagnetic impurity Zn substitution effect has been extensively studied for high- T_c cuprate superconductors and the parent Mott insulators, magnetic impurity Ni substitution effect has not been extensively studied relatively. Particularly, to our knowledge, there are a few studies for Ni doping effect in semiconducting regime ([1-4]). In this paper, we report a systematic study of Ni substitution effect on the polycrystalline samples of $\text{La}_{2-x}\text{Sr}_x\text{Cu}_{1-z}\text{M}_z\text{O}_4$ in the parent antiferromagnet, the lightly doped insulators without long range order, and the relatively low- T_c superconductors, through measurement of uniform magnetic susceptibility χ . The polycrystalline samples were synthesized by a solid state reaction method. For comparison, we synthesized also $\text{La}_{2-x}\text{Sr}_x\text{Cu}_{1-z}\text{Zn}_z\text{O}_4$ [5]. Here, we emphasize an importance of careful annealing process at 650 °C for 48 hours under Ar gas atmosphere. The uniform magnetic susceptibility was mea-

sured by a SQUID magnetometer. The Néel temperature T_N is determined by the maximum behavior, or the onset temperature of hysteresis of the magnetic susceptibility between zero field cooling (ZFC) and field cooling (FC). The spin glass temperature T_{SG} is defined by the low temperature sharp peak in the further hysteresis [6]. For non-superconducting samples, a magnetic field of $100 \sim 1.0 \times 10^4$ Oe was applied, whereas for superconducting samples, a field of ~ 100 Oe was applied.

Figure 1 shows Ni doping effect on the T dependence of magnetic susceptibility. We found the followings:

1) Up to $z=0.3$ for pure La_2CuO_4 , Ni doping does not destroy the Néel ordering. Such a robust T_N to Ni doping is in contrast to a fragile T_N to Zn doping [7,3]. In Fig. 2, for comparison, T_N versus Ni or Zn content z is shown.

2) With further Ni doping $z > 0.3$, the spin glass ordering appears at $T_{SG} \sim 15$ K, probably due to Ni spin freezing. Hereafter, we call this Ni freezing temperature.

¹ Corresponding author. E-mail: machi@istec.or.jp

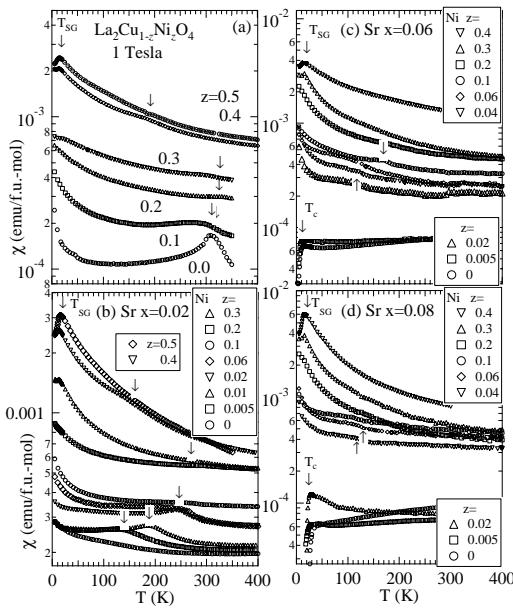


Fig. 1. Ni-doping effect on the ZFC *dc* magnetic susceptibility of $\text{La}_{2-x}\text{Sr}_x\text{Cu}_{1-z}\text{M}_z\text{O}_4$; parent insulator $x=0$ (a), lightly doped non-superconducting $x=0.02$ without long range order at $z=0$ (b), lightly doped $x=0.06$ with relatively low T_c at $z=0$ (c), and $x=0.08$ at $z=0$ (d). The arrows without character indicate T_N 's, the other arrows with character are T_c 's, or T_{SG} 's. For simplicity, we do not attach all the arrows.

3) The Néel ordering, which is suppressed down to $T_N < 4.2$ K by Sr doping $x=0.02$, recovers more rapidly and largely with Ni doping, than with Zn doping [5].

4) The superconductivity for Sr $x=0.06$ or 0.08 is easily suppressed by Ni doping. The Ni doping induces the superconductor-to-antiferromagnet transition (crossover) at $z=0.02\sim0.04$. Further Ni doping for $z > 0.3$ or > 0.2 induces the spin glass state with $T_{\text{SG}} \sim 15$ K.

5) The Ni freezing temperature with heavily Ni doping does not seem to depend on Sr doping level.

6) The Ni freezing temperature $T_{\text{SG}} \sim 15$ K is about two times larger than the Ni-free, spin glass temperature $T_g \sim 7$ K at Sr $x=0.04$ [6].

In Fig. 3, we summarize the magnetic phase diagram versus Ni content z at various Sr doping, which can be drawn from the preset study in Fig. 1. The magnetic impurity Ni doping yields rich phases through the order-to-disorder transition (or crossover) in antiferromagnetic correlation, the spin glass transition on Ni spin freezing, and the superconductor-to-insulator transition (or crossover). In conclusion, we demonstrate that Ni doping causes the above novel effects on the strongly correlated electron system $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$.

This work was supported by NEDO.

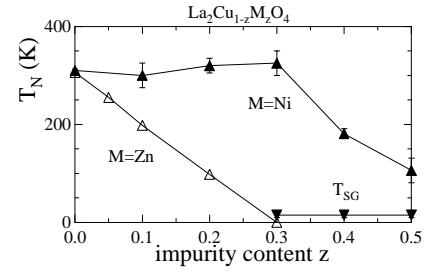


Fig. 2. $\text{La}_2\text{Cu}_{1-z}\text{M}_z\text{O}_4$: T_N versus $\text{M}=\text{Ni}$ or Zn content z . The result is qualitatively consistent with Refs. [7,3].

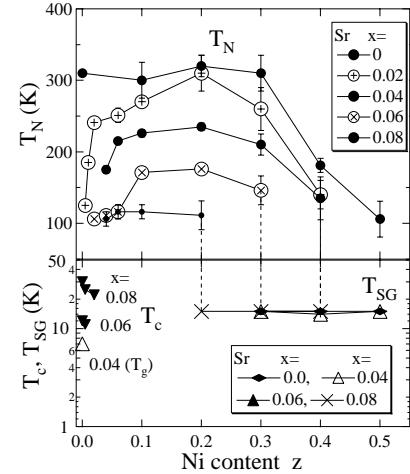


Fig. 3. Magnetic phase diagram of $\text{La}_{2-x}\text{Sr}_x\text{Cu}_{1-z}\text{M}_z\text{O}_4$; T_N , T_{SG} , T_g , and T_c versus Ni content z at Sr doping. The solid and the dashed lines are guide for the eye.

References

- [1] H. Fujishita, M. Sato, Solid State Commun. **72** (1989) 529.
- [2] K. Ohbayashi, H. Tsukamoto, H. Yamashita, A. Fukumoto, Y. Utsunomiya, N. Ogita, M. Udagawa, S. Funahashi, J. Phys. Soc. Jpn. **59** (1990) 1372.
- [3] S. T. Ting, P. Pernambuco-Wise, J. E. Crow, E. Manousakis, J. Weaver, Phys. Rev. B **46** (1992) 11772.
- [4] K. Sreedhar, P. A. Metcalf, J. M. Honig, Physica C **227** (1994) 160.
- [5] M. Hücker, V. Kataev, J. Pommer, J. Harraß, A. Hosni, C. Pfletsch, R. Gross, B. Büchner, Phys. Rev. B **59** (1999) R725.
- [6] F. C. Chou, N. R. Belk, M. A. Kastner, R. J. Birgeneau, A. Aharonov, Phys. Rev. Lett. **75** (1995) 2204.
- [7] K. Uchinokura, T. Ino, I. Terasaki, I. Tsukada, Physica B **205** (1995) 234.