

Field effect on itinerant electron magnetism of $Y_{1-x}Er_xCo_2$ compounds

Takao Nakama^{a,1}, Masafumi Tokumura^a, Kiyoharu Uchima^a, Masato Hedo^b, Yoshiya Uwatoko^b, Katsuma Yagasaki^a, Alexander T. Burkov^c

^a Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan

^b ISSP, University of Tokyo, Kashiwa, Chiba 277-8581, Japan

^c A. F. Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021, Russia

Abstract

Thermopower S and electrical resistivity ρ of cubic Laves phase pseudo-binary compounds $Y_{1-x}Er_xCo_2$ were measured from 2 K to 300 K in magnetic fields up to 15 T. S and ρ show a strong field dependence in a vicinity of the magnetic ordering temperature. The reduction of the exchange magnetic field B_{exc} acting on Co 3d electrons by Y substitution for Er results in a separation of magnetic transition temperatures of Er and Co subsystems in $Y_{0.4}Er_{0.6}Co_2$. The collapse of the itinerant Co 3d moments of $Y_{0.4}Er_{0.6}Co_2$ is induced by applying external magnetic field about 10 T.

Key words: spin fluctuation; thermopower; electrical resistivity; itinerant electron metamagnetism

The cubic Laves phase compounds RCo_2 (R stands for rare earth elements) with magnetic heavy R elements, except $TmCo_2$, are ferrimagnets. The first-order magnetic phase transition observed in $ErCo_2$, $HoCo_2$, and $DyCo_2$ is explained as the metamagnetic behavior of Co 3d itinerant electrons, which are magnetized by the internal exchange field B_{exc} of the ordering rare earth magnetic moments; $B_{\text{exc}} = n_{\text{fd}}M_R$, where n_{fd} and M_R are the exchange coupling constant and the rare earth magnetic moments, respectively [1,2]. When the external magnetic field μ_0H is applied, the effective molecular field B_{eff} acting on Co 3d itinerant electrons in $Y_{1-x}Er_xCo_2$ can be expressed as $B_{\text{eff}} = x n_{\text{fd}}M_R - \mu_0H$. It was reported that the separation of Er and Co magnetic ordering temperatures takes place in $Y_{1-x}Er_xCo_2$ system with Er concentration of $x = 0.6$, in which the magnetic ordering temperature T_C^{Co} of the Co subsystem is lower than T_C^{Er} of R subsystem [3]. In pure $ErCo_2$ the separation of the ordering temperatures was observed in external magnetic

field [4]. The sensitivity of magnetism of Co 3d itinerant electrons to the external magnetic field, due to reduction of B_{eff} , is expected to be much stronger in $Y_{1-x}Er_xCo_2$ compounds within a limited range of x . In this paper we present the results on electrical resistivity ρ and thermopower S of $Y_{0.4}Er_{0.6}Co_2$, measured in magnetic fields up to 15 T.

The sample preparation and measurement procedures have been described in ref. [5]. Figure 1 shows the temperature dependencies of ρ and S of $Y_{0.4}Er_{0.6}Co_2$ in zero magnetic field. $\rho(T)$ curve has an up-turn around the magnetic ordering temperature and a sudden decrease with decreasing temperature. $S(T)$ reveals a peak at $T \approx 13$ K, having a minimum around 25 K and a broad peak around 60 K. We determined the magnetic phase transition temperatures of Er (T_C^{Er}) and Co (T_C^{Co}) subsystems as the temperatures where $d\rho/dT$ takes a minimum and maximum, respectively [3]. Below the magnetic ordering temperature of $T_C^{\text{Er}} \approx 16$ K, the itinerant d electrons subsystem orders magnetically at $T_C^{\text{Co}} \approx 11$ K where B_{exc} exceeds the metamagnetic critical field B_c . Figure 2 depicts the

¹ E-mail: nakama@sci.u-ryukyu.ac.jp, FAX: +81-98-895-8509

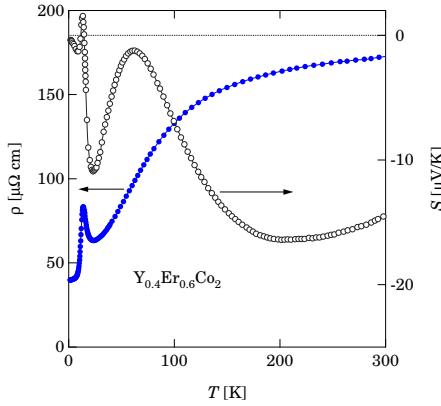


Fig. 1. The temperature dependencies of electrical resistivity ρ and thermopower S in zero magnetic field.

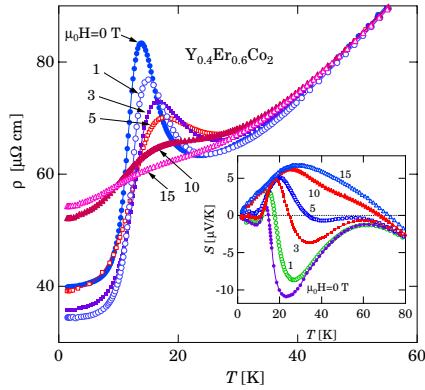


Fig. 2. The temperature dependencies of ρ and S (inset) for the compound of $\text{Y}_{0.4}\text{Er}_{0.6}\text{Co}_2$ in several magnetic fields up to 15 T.

behavior of ρ and S (inset) around the magnetic phase transition temperature in several magnetic fields up to 15 T. At the temperatures above $T \approx 100$ K, both ρ and S curves show almost no field dependencies. A large field effect is observed in the temperature region of magnetic phase transition. The temperature, where ρ attains a maximum, increases with increasing $\mu_0 H$. However the magnitude of the resistivity at the maximum decreases with increasing $\mu_0 H$ and the maximum of ρ almost disappears in the field of $\mu_0 H = 15$ T. This implies that the spin fluctuations of Co 3d itinerant electrons, enhanced by the fluctuating exchange field of 4f moments above magnetic ordering temperature [5], become suppressed by external magnetic field.

The field dependencies of the magnetic phase transition temperatures of T_C^{Er} and T_C^{Co} are shown in fig. 3. T_C^{Er} and T_C^{Co} in $\mu_0 H \leq 7$ T were determined by using the temperature derivative of ρ . T_C^{Co} in $\mu_0 H \geq 7$ T was obtained from the magnetic field dependencies of ρ and S . As shown in fig. 3, T_C^{Er} increases with increasing

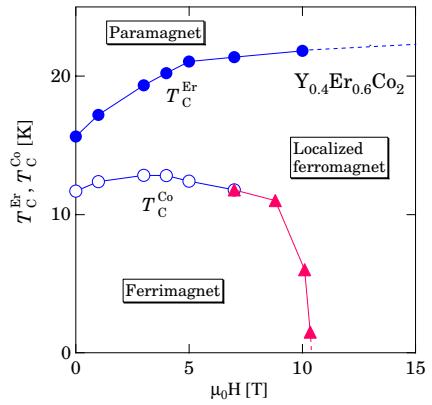


Fig. 3. The field dependencies of the magnetic phase transition temperatures of Er (T_C^{Er}) and Co (T_C^{Co}) subsystems in $\text{Y}_{0.4}\text{Er}_{0.6}\text{Co}_2$.

$\mu_0 H$ below 5 T, and shows the saturation in magnetic fields above 5 T. On the other hand, T_C^{Co} shows a small change in magnetic field of $\mu_0 H \leq 7$ T, however a sudden drop of T_C^{Co} above 9 T and no sign of long range magnetic order at $\mu_0 H > 10$ T are observed. In magnetic field region of $\mu_0 H > 10$ T, the effective molecular field acting on Co subsystem B_{eff} is lower than the metamagnetic critical field B_c of Co 3d electron subsystem; $B_{\text{eff}} < B_c$ at $T = 0$.

From the results described above, we can obtain the exchange molecular field of $B_{\text{exc}} \approx 185$ T for ErCo_2 from the condition of $B_c = x n_{\text{fd}} M_R - \mu_0 H$ by using the values of $\mu_0 H = 10.5$ T and $B_c = 100$ T [4]. And the critical Er concentration can be estimated as $x_{\text{cr}} \approx 0.55$. Below this Er concentration, it is observed no long range magnetic order of Co 3d itinerant electrons in $\text{Y}_{1-x}\text{Er}_x\text{Co}_2$. These values of B_{exc} and x_{cr} show a good agreement with the literature data [3,6].

In summary, electrical resistivity and thermopower of $\text{Y}_{0.4}\text{Er}_{0.6}\text{Co}_2$ were measured from 2 K to 300 K in magnetic fields up to 15 T. The reduction of the exchange molecular field by Y substitution for Er results in a separation of magnetic ordering temperatures of Er and Co subsystems. The collapse of the itinerant Co 3d moments by external field about 10 T was observed. The exchange molecular field B_{exc} for ErCo_2 and the critical concentration x_{cr} were obtained.

References

- [1] T. Goto, T. Sakakibara, K. Murata and H. Komatsu, *J. Magn. Magn. Mater.* **90&91** (1990) 700.
- [2] E. Gratz, A. Lindbaum, A. S. Markosyan, H. Muller and Yu. Sokolov, *J. Phys.: Condens. Matter* **6** (1994) 6699.
- [3] R. Hauser, E. Bauer, E. Gratz, H. Müller, M. Rotter, H. Michor, G. Hilscher, A. S. Markosyan, K. Kamishima and T. Goto, *Phys. Rev. B* **61** (2000) 1198.

[4] T. Nakama, M. Hedo, A. Sawada, Y. Shimoji, M. Tokumura, K. Uchima, K. Yagasaki, H. Niki, A. T. Burkov, *Physica B* (in press).

[5] T. Nakama, K. Shintani, K. Yagasaki, A. T. Burkov, Y. Uwatoko, *Phys. Rev. B* **60** (1999) 511.

[6] N. H. Duc, T. D. Hien, P. E. Brommer and J. J. M. Franse, *J. Phys. F: Met. Phys.* **18** (1988) 275.