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Abstract

The dependence of the Josephson interlayer coupling in layered superconductors on the magnetic field H is studied
numerically in the limit of complete disorder of the positions of pancake vortices (pancake gas). We find that the
spatial average 〈cos ϕ(r)〉 is proportional to 1/H1/2, where ϕ is the gauge-invariant phase difference between two
layers. This result is compared with the magnetoabsorption resonances observed in layered superconductors.
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It is widely believed that magnetoabsorption mi-
crowave resonances, which have been observed in Bi
compounds and some other layered superconductors,
are related to the Josephson Plasma Resonance (JPR)
with the frequency (see e.g. [1] and references therein)

ω2
0 = ω2

p〈cos ϕ(r)〉 , (1)

where ωp is the Josephson-plasma frequency at zero
magnetic field, r = (x, y) is the inplane coordinate,
ϕ(r) is the stationary gauge-invariant phase difference
between neighboring layers, and 〈. . .〉 denotes spatial
averaging. If the magnetic field H normal to the layers
generates ideally straight vortices one has ϕ(r) = 0,
and the resonance frequency does not depend on the
magnetic field. But one has ϕ(r) �= 0 if there is a mis-
alignment of the pancake vortices in neighboring layers
due to thermal fluctuations and disorder.

A characteristic feature of the observed magnetoab-
sorption resonances at high magnetic fields is the an-
ticyclotronic behavior: ω2

0 ∝ 1/Hα, where α was re-
ported to be between 0.7 and 1 (see [1] and refer-
ences therein). In order to check whether this behav-
ior follows from Eq. (1) we have calculated numerically
〈cos ϕ(r)〉 for a gas of pancake vortices, in which disor-
der destroys any correlation of pancake positions both
between and inside the layers.
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In principle, we should solve the system of station-
ary sine-Gordon equations for the phases across all in-
terlayer spacings. But one may expect to receive a cor-
rect physical picture by solving the simpler problem of
a double layer with only one fluctuating phase ϕ(x, y),
which is described by the sine-Gordon equation:

1

λ2
J

sin ϕ −∇2ϕ = 0 . (2)

The pancakes in the upper and lower layer may be
considered as vortices and antivortices, projected unto
the x, y plane, with ϕ(x, y) now being the phase of this
2D arrangement of vortex–antivortex pairs.

At high fields the intervortex distance a =
√

Φ0/B is
much less than the Josephson length λJ . Neglecting the
Josephson coupling ∝ 1/λ2

J in Eq. (2), two pancakes
in the neighboring layers at the points (0,0) and (0,rw)
generate the phase ϕ (short Josephson string):

ϕ0(r) = arctan
y

x
− arctan

y

x − rw
. (3)

At large distances r =
√

x2 + y2 � rw the phase is
ϕ0(r) = −rwy/r2. This means that the contribution
of one Josephson string to 〈ϕ0(r)

2〉 is logarithmically
divergent with the system size, and we cannot neglect
the Josephson coupling even in the limit λJ � a. But
one may hope that the effect of finite λJ can be simu-
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Fig. 1. Lines of equal phase ϕ for 49 vortex–antivortex pairs

shifted from ideal square lattice positions with spacing a by

random displacements with variance s/a = 0.25. The variance

of the pair spacing is
√

2s. The contour spacing is π/6. The

jump of the phase from +π to −π may be chosen at the bold

lines; the lines with dots then shown ϕ = 5π/6.

lated by choosing a finite size L ≈ λJ of the considered
area with a large number of vortex-antivortex pairs.

In our numerical calculation we choose more or less
random positions of N vortices and N antivortices in a
quadratic cell of the size L×L, so the average distance
of each type is a = L/

√
N . The phase ϕ(x, y) is the

solution of Eq. (2) at λJ → ∞ (the Laplace equation):

ϕ(x, y) + 2πn = arg

N∏
1

z − zv
i

z − za
i

=

N∑
1

[
arctan

y − yv
i

x − xv
i

− arctan
y − ya

i

x − xa
i

]
, (4)

where n is an integer, (xv
i , yv

i ) and (xa
i , ya

i ) are the posi-
tions of the vortices and antivortices, respectively, and
z = x + iy etc. are complex numbers.

To simulate disorder, we shift each vortex and each
antivortex by a Gaussian distributed random vector
of mean square length s away from its position in a
perfect square lattice (ϕ = 0 at s = 0). Figure 1 shows
the equal-phase lines for an arrangement of 49 vortex-
antivortex pairs with relative displacement amplitude
s/a = 0.25.

In our simulations we calculate

f = 〈cos[ϕ(x, y) − ϕ0]〉max = |〈exp[iϕ(x,y)]〉| , (5)

which determines the frequency: ω2
0 = ω2

pf . The factor
f depends on the degree of randomness, thus f = f(s).
With increasing displacement amplitude s the phase
fluctuations increase, and when s/a exceeds the value
≈ 0.5, we find saturation to the limit of completely
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Fig. 2. The spatial average f(∞) = | < exp(iϕ) > | for

a gas of randomly positioned vortices and antivortices as

a function of the number of pairs in the periodicity cell,

N = L2/a2 ≈ λ2
J/a2. The linear fit shows f(∞) = 0.55/N1/2.

uncorrelated randomly positioned N vortices and N
antivortices. Choosing various boundary conditions at
the border of the square L× L, we find that the treat-
ment of the vortices near the boundaries is not crucial.

The pancake gas corresponds to the limit of com-
pletely random positions, s ≈ rw � a, when an-
ticyclotronic behavior is expected. We find that
〈cos ϕ(r)〉max = f(∞) = c · a/L with the constant
c = 0.55. (Fig. 2). Since L has the meaning of the
Josephson length λJ , different N correspond to differ-
ent ratios a/λJ ≈ a/L = N−1/2. On the other hand
the number of pancakes N = L2/a2 in our cell is pro-
portional to the magnetic field H = Φ0/a2, where a is
the intervortex distance.

Thus our numerical calculation yields anticy-
clotronic power-law behavior ω2

0 ∝ 1/Hα with an ex-
ponent α = 1/2. This clearly differs from the exponent
α = 0.7 ÷ 1 deduced from the experiment. A possible
way to resolve this disagreement is to consider other
interpretations of the magnetoabsorption resonances
at high normal magnetic fields, which are not based
on JPR and Eq. (1) (see discussion in [2,3]).
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