

Effect of orbital ferromagnetism on textures in a slab of $^3\text{He-A}$

Paul M. Walmsley ¹, John R. Hook ² and Andrei I. Golov

Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK

Abstract

The effect of orbital ferromagnetism on the Fréedericksz transition of a uniform \mathbf{l} -texture of $^3\text{He-A}$ in a slab geometry has been calculated. The transition magnetic field is altered in opposite directions for \mathbf{l} parallel and antiparallel to the field by an amount proportional to the ferromagnetic moment. At high fields, for \mathbf{l} initially antiparallel to the field we find another threshold above which the uniform \mathbf{l} -texture is restored with \mathbf{d} perpendicular to \mathbf{l} .

Key words: superfluid; helium-3; texture; ferromagnetism

1. Introduction

The A phase of superfluid ^3He is predicted to have an orbital magnetic moment of the order of $10^{-11} \mu_B$ per atom antiparallel to the orbital anisotropy vector \mathbf{l} [1], making $^3\text{He-A}$ a ferromagnetic liquid. There has been one reported observation of the orbital ferromagnetism [2] but the cell geometry resulted in non-uniform textures making any quantitative estimate of the effect difficult. A slab geometry is ideally suited for detecting the influence of orbital ferromagnetism on the texture since uniform \mathbf{l} -textures can be obtained and manipulated [3]. There have been several previous studies of $^3\text{He-A}$ in a slab (see [4] for a review).

We consider a sample of $^3\text{He-A}$ contained between two infinite parallel plates at $z = \pm D/2$ and contained in the xy plane with an applied field \mathbf{H} in the z direction. The texture is characterized by two angles: $\theta(z)$ is the angle between \mathbf{l} and $\hat{\mathbf{z}}$ and $\phi(z)$ is the angle between \mathbf{d} and $\hat{\mathbf{z}}$. The free-energy density is

$$F = \frac{1}{2}(K_S \sin^2 \theta + K_B \cos^2 \theta) \left(\frac{d\theta}{dz} \right)^2 + \frac{1}{2}(\rho_{sp\perp} \sin^2 \theta + \rho_{sp\parallel} \cos^2 \theta) \left(\frac{d\phi}{dz} \right)^2 \quad (1)$$

$$- \frac{1}{2}\lambda_D \cos^2(\theta - \phi) + \frac{1}{2}\Delta\chi H^2 \cos^2 \phi - M_l H \cos \theta$$

where \mathbf{M}_l is the orbital magnetization and the other coefficients follow the notation of [4]. The free energy has been minimized by using the calculus of variations to find Euler equations for θ and ϕ . The texture is then found by solving these equations subject to the boundary conditions that $\theta = 0$ and $d\phi/dz = 0$ at $z = \pm D/2$. The solutions discussed in the following sections use the following dimensionless parameters: $D/L_D = 25$, $K_B/\rho_{sp\parallel} = 1.5$, $K_S/\rho_{sp\parallel} = 0.5$, $\rho_{sp\perp}/\rho_{sp\parallel} = 2$ and $M_l/(\Delta\chi H_D) = -10^{-4}$ where $L_D = (\rho_{sp\parallel}/\lambda_D)^{1/2}$ is the dipole-unlocking length ($\sim 10 \mu\text{m}$). The applied magnetic field is given in units of $H_D = (\lambda_D/\Delta\chi)^{1/2}$, the dipole-unlocking field (~ 25 Gauss).

2. Low field behaviour

Previous studies have shown that for $H < H_F$ the stable solution is the uniform texture ($\theta = \phi = 0$). When $H \geq H_F$ the texture in the centre of the slab becomes distorted. This textural transition is known as a Fréedericksz transition and has been measured for a slab of $^3\text{He-A}$ [5]. The effect of orbital ferromagnetism is to cause a difference in the threshold field between the states with \mathbf{l} initially parallel and antiparallel to

¹ E-mail: paul@grendel.ph.man.ac.uk

² Deceased

H. In the dipole-locked limit ($\theta = \phi$ everywhere) the threshold field is modified,

$$H_F = H_{F0} \pm \frac{M_l}{2\Delta\chi} \quad (2)$$

where H_{F0} is the threshold in the absence of orbital ferromagnetism. The different signs in Eq. 2 correspond to the states where \mathbf{l} is parallel (-) and antiparallel (+) to \mathbf{H} . The difference is $\Delta H_F = M_l/\Delta\chi \sim 2 \times 10^{-3}$ Gauss, which should be independent of temperature to first order. We have calculated textures including dipole-unlocking effects numerically for $H > H_F$. Fig. 1 shows the angle between \mathbf{l} and $\hat{\mathbf{z}}$ in the centre of the slab, $\theta(0)$, for different values of applied field near H_{F0} .

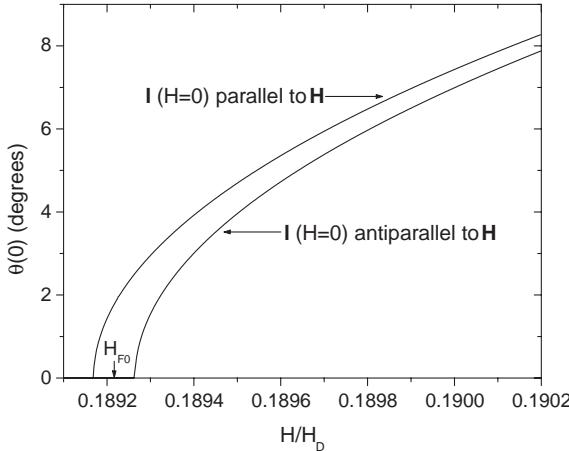


Fig. 1. Effect of orbital ferromagnetism on Fréedericksz transition field.

3. High field behaviour

In the absence of orbital ferromagnetism both $\theta(0)$ and $\phi(0)$ tend asymptotically towards $\pi/2$ as magnetic field is increased. The effect of orbital ferromagnetism is that as magnetic field increases \mathbf{d} remains perpendicular to \mathbf{H} but the amount of dipole-unlocking ($\theta - \phi$) increases as \mathbf{l} tries to align itself antiparallel to \mathbf{H} (Fig. 2). In this case the \mathbf{l} -texture in the centre of the slab is approximately

$$\theta(0) \simeq \frac{\pi}{2} \pm \frac{M_l H}{\lambda_D} \quad (3)$$

where the difference in sign indicates \mathbf{l} initially antiparallel (-) and parallel (+) to \mathbf{H} .

In the former case a uniform texture with $\theta(z) = 0$ and $\phi(z) = \pi/2$ occurs after the magnetic field reaches a threshold value

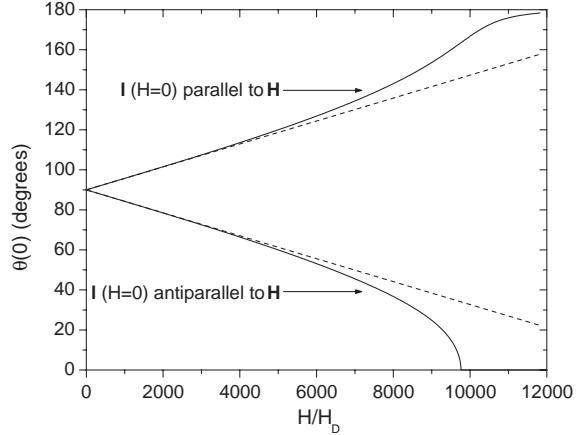


Fig. 2. Angle between \mathbf{l} and $\hat{\mathbf{z}}$ at high fields. The dashed lines show the approximate solutions given by Eq. 3. The low field region (Fig. 1) cannot be resolved.

$$H_c = \frac{1}{M_l} \left(\lambda_D - K_B \frac{\pi^2}{D^2} \right) \quad (4)$$

which is $9763 H_D$ for the parameters given in section 1. In the latter case, the \mathbf{l} -texture in the centre becomes aligned in the opposite direction to the texture at the slab boundary resulting in a higher free-energy compared to the previous case. At certain values of magnetic field this metastable state should change to the ground state due to either an extrinsic process (growth of a domain of the alternative state from a nucleated or pinned defect such as a vortex) or an intrinsic process (a global instability).

Acknowledgements

We are grateful to Henry Hall for many useful discussions. This work was supported by the EPSRC through grant GR/N35115.

References

- [1] A. J. Leggett, Nature **270** (1977) 585.
- [2] D. N. Paulson and J. C. Wheatley, Phys. Rev. Lett. **40** (1978) 557.
- [3] P. M. Walmsley, D. J. Cousins, H. E. Hall and A. I. Golov, these Proceedings.
- [4] J. R. Hook, Texture and Anisotropic Properties of a Slab of $^3\text{He-A}$ in a Magnetic Field, in: Helium Three, ed. W. P. Halperin and L. P. Pitaevskii (Elsevier Science, 1990).
- [5] J. R. Hook, A. D. Eastop, E. Faraj, S. G. Gould and H. E. Hall, Phys. Rev. Lett. **57** (1986) 1749.