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Abstract

We formulate a microscopic theory for calculating the dynamic structure function of 3He and other strongly
interacting Fermi liquids. The theory is a generalization of the correlated basis function theory for the dynamics
of 4He and includes time–dependent two–particle–two–hole excitations. It may also be interpreted as a systematic
extension of the random–phase approximation (RPA). Comparison of numerical results with experiments show
a significant improvement of the excitation spectrum over RPA predictions while maintaining the accuracy of
prediction of ground–sate quantities like the static structure function.
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1. INTRODUCTION

The excitation spectrum of liquid 4He can be quite
well understood by generalizing the original Feynman–
theory[1] to include time–dependent pair correlations.
This is plausible because, in the vicinity of the roton
minimum, the wavelength of the excitation is compa-
rable to that of the interparticle distance and, hence,
long–wavelength approximations like the randon phase
approximation are inapplicable.

The first microscopic calculation of the excitation
spectrum of 4He usind fluctuating pair correlations
were carried out by Jackson[2] and by Chang and
Campbell[3]; later improvements of the implementa-
tion of the theory lead to almost perfect agreement
between theory and experiment well beyond the roton
wave number.[4]

We report here the first implementation of the same
ideas for Fermi systems. We assume a correlated ground
state Ψ0(1, . . . ,N) = F (1, . . . ,N)Φ 0(1, . . . ,N),
where Φ0(1, . . . ,N) is a model wave function, and
F (1, . . . ,N) correlation operator which is normally
taken to be an optimized Feenberg function, alterna-
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tively we may assume that Ψ0(1, . . . ,N) is the exact
ground state.

The time–dependent Fermion wave function is taken
to be a generalization of the time–dependent Hartree–
Fock wave function which includes time–dependent
two–particle amplitudes:

|Ψ(t)〉 =
F |Φ(t)〉

〈Φ(t)|F † F |Φ(t)〉1/2
,

|Φ(t)〉 = e−iHoo t/h̄ e
1
2 U(t) |Φ0〉 , (1)

U(t) =
∑
ph

cph(t) a†
pah

+
1

2

∑
pp′hh′

dpp′,hh′ (t) a†
pa†

p′ah′ah . (2)

In analogy to defining the model ground state by a
variational principle, we determine the perturbed sys-
tem by a stationarity principle. The action integral is
defined by

S
[
cph, c∗ph, dpp′hh′ , d∗

pp′hh′
]

=

∫
dt L(t) , (3)

where the Lagrangian has the form

L(t) =
〈

Ψ(t)

∣∣∣ H + hext(r; t) − i h̄
∂

∂t

∣∣∣Ψ(t)
〉

, (4)
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q [Å−1] ω1 [K] ω2 [K] CRPA 2p-2h

0.3 1.15 5.8 6.0 3.7

0.4 1.15 7.5 8.1 6.0

0.5 1.15 8.7 11.0 8.0

0.6 1.15 10.5 13.5 10.0

0.7 1.15 12.1 16.0 12.5

0.8 1.15 12.8 18.5 14.5

Table 1

Experimental data from neutron scattering experiments of

Glyde et. al.[6]. The energies ωi are the location of the peaks

in the data at a temperature of 0.1 K. The peak at low en-

ergies is the spin-fluctuation scattering and at higher energies

it secribes the the zero sound mode. In the last two columns

are the energies of the peak in the correlated RPA and for our

2p-2h calculation.

where hext(r; t) describes a small, external perturba-
tion. The action integral is made stationary under
variations of the cph(t) and dpp′,hh′ (t), omitting the
dpp′,hh′ (t) leads to the (correlated)RPA.

The equations of motion are significantly more com-
plicated than the RPA, but they can be manipulated,
employing approximations that lead to the boson re-
sult in the appropriate limit, to give a closed–form ex-
pression for the dynamic structure function. Central to
the derivation is a local approximation which assumes
that the 2p–2h amplitudes dpp′,hh′ (t) are matrix ele-
ments of a local operator d(r, r′; t). The resulting form
of the dynamic structure function is then[5]:

χ(2p2h)(q, ω) = 2

[
χ0(q, ω) +

S(q)

SF (q)
χ

(−)
0 (q, ω)χ

(+)
0 (q, ω)

(
Ṽxx + Ṽyy − Ṽxy − Ṽyx

)]/
/[

2 + χ
(−)
0

(
Ṽxx + Ṽxy

)− χ
(+)
0

(
Ṽyy + Ṽyx

)− (5)

− S(q)

SF (q)

[
χ

(+)
0 (Ṽyy − Ṽyx) + χ

(−)
0 (Ṽxy − Ṽxx) − 2 χ

(+)
0 χ

(−)
0 (ṼxxṼyy − ṼxyṼyx)

]]
.

where the Vij are different local channel interactions,
and

χ
(±)
0 (q, ω) =

1

N

∑
h

n(h) (1 − n(h + q))

h̄ω ∓ eh+q h ± iη
, (6)

are channel Lindhard functions.

2. APPLICATIONS

Table 1 compares the peak location of our calculated
dynamic structure function with that of the correlated
RPA and with the experiments of Ref. [6]. Note that we
are, here, not concerned with spin fluctuations, there-
fore we do not reproduce the spin–fluctuation peak.
Otherwise, it is evident that including time–dependent
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Fig. 1. Dynamic structure function for the calculation includ-

ing time–dependent pair correlations. The boxes represent the

Feynman excitation spectrum h̄2q2/2mS(q). The grey scale

ranges from white for zero to black for the highest absorption.

pair correlations leads to a significant improvement of
the theoretical predictions over the RPA.

More details on the dynamic structure function are
shown in figure 1.
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