Numerical renormalization study on magnetic properties of edge
states in carbon nanotubes
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Abstract

A m-electron network in carbon nanotubes with zigzag open edges exhibits strongly localized edge states, which
are expected to show peculiar magnetic properties. We study the effect of the electron-electron interaction on the
magnetic properties of the systems using the density-matrix renormalization-group method. We show that effective
spins which can move almost freely appear around the zigzag open edges. A schematic picture representing the
low-energy physics of nanographite systems with zigzag edges is proposed.
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Recently, it has been realized that electronic and
magnetic properties of graphite-based materials with
nano-meter size are affected crucially by their edge
shape: nanographites (NGs) with zigzag edges exhibit
strongly localized edge states which form partly flat
bands at the Fermi energy while such a edge state
does not appear in NGs with armchair edges|1,2].
Since the partly flat bands, followed by a sharp peak
of the local density of states, are expected to involve
magnetic instability, it is important to study the
effect of the electron-electron couplings on the mag-
netic properties of the NGs with zigzag edges. The
effect of electron-electron couplings has been investi-
gated within a mean-field approximation[1,3] and the
density-functional theory[4]. It was suggested that a
ferrimagnetic spontaneous spin polarization appears
at the zigzag edges. However, it is also known that the
approximations used in the studies are not appropriate
for low-dimensional systems such as NGs. Thus, more
detailed analysis with a controlled approximation is
desired.

In this paper, we study magnetic properties of the
zigzag carbon nanotubes (NTs) with open edges. We
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consider the Hubbard model on the (2,0) zigzag NTs[5]
at half-filling given by

H = _tz Z (CI,UCJ"U + h.c.) + Uznmni,l’ (1)

(i,5) o=T,1 i

where n;,, = c}ﬁaci,g and the sum Z(m.) is taken only
for the nearest-neighbor sites. We set ¢ = 1 through-
out this paper. Although the width of the NTs is quite
narrow, magnetic properties expected to be common
to general zigzag NTs already appear even for such
a narrow NTs. We have employed the density-matrix
renormalization-group (DMRG) method[6], which al-
lows us to perform a highly accurate calculation even
in the presence of electron-electron couplings. We have
calculated the energy gap of spin excitations

Aoy = Eo(L/2+1,L)2 — 1) — Eo(L/2, L)2), (2)
where Fo(N7, N|) is the lowest energy of the system
with N1 up- and N| down-spin electrons and L is the

total number of sites. We have also calculated the local
spin polarization at each carbon site,

1
(Siym = E(nm — N, )M, (3)
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Fig. 1. The spin gap Ap1 of the (2,0) NTs for U = 1 (circles),
U = 2 (squares), and U = 4 (triangles) as functions of the
length of NTs. The numerical errors of the DMRG calculation
are smaller than the symbols.
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Fig. 2. The distribution of local spin polarization (S ); on each
carbon site in a (2,0) nanotube for U = 1. Open and gray cir-
cles represent the positive and negative values of the spin po-
larization, respectively. The area of each circle is proportional
to the absolute value of the polarization.

where (---)as represents the expectation value in the
lowest energy state in the subspace (L/24+M, L/2—M).
The number of kept states in the DMRG calculation
is up to m = 700 per block. The numerical errors due
to the truncation are estimated from the difference be-
tween the data with different m’s.

Figure 1 shows the spin gap for several typical val-
ues of U as a function of the length of NTs. The spin
gap takes non-zero values for all calculated U. This in-
dicates that the ground state is a total spin-singlet for
U > 0 and a finite magnetic field corresponding to the
spin-gap energy is required to magnetize the system.
However, we also find that the spin gap decreases ex-
ponentially as the length of NTs becomes larger. Thus,
if the NT is long enough, one can magnetize the system
by applying an extremely small (almost infinitesimal)
field. In Fig. 2, we show the distribution of the spin
polarization (S7)1 in the magnetic excited state. It is
clear that the magnetization appears almost only on
the sites around the zigzag open edges. We thus con-
clude that only the spins of the electrons in the edge
states are polarized easily by the small field while the
spins in bulk sites are not.

The results obtained above can be understood in a
schematic picture in the following. In the picture, the

system is composed of two parts: one is the bulk elec-
trons forming a spin-singlet state rigidly and the other
is effective spins consisting of electrons around the
zigzag-edge sites correlating loosely with each other.
The effective spins interact via an antiferromagnetic ef-
fective coupling beyond the bulk sites, resulting in the
ground state of total spin-singlet. The effective cou-
pling, which corresponds to the spin-gap energy, be-
comes smaller as the length of the NT increases, and
finally, the effective spins can move almost freely when
the length becomes large enough.

To summarize, we have studied the magnetic prop-
erties of the zigzag N'Ts with open edges in the pres-
ence of the electron-electron couplings. We have found
that the ground state of the system is a spin-singlet
and a finite spin gap opens for U > 0. The system ex-
hibits effective spins at zigzag edges which are easily
magnetized by a small magnetic field. We note that we
have also observed the similar magnetic behaviors in
another typical NG system, called nanographite rib-
bons[7]. We thus expect that the picture proposed in
this paper is valid not only for zigzag NTs but for gen-
eral NG systems with zigzag edges.
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