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Abstract

The solidification model for superfluid 4He is reviewed, where the symmetry breaking order parameter η is
appropriately defined and included in addition to the density change ξ. As a remarkable feature, the model explicitly
shows that the instability to the solid is associated with the instability against the fluctuation of η, namely the
softening of ’hyperbolic roton’. The rate W of solid nucleation is calculated based on the model. In contrast to ξ,
η is non-conserved quantity, and then it leads the novel exponents in W near the spinodal pressure.
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We shall first review the ’hyperbolic roton’ model[1]
for the solidification of superfluid 4He under pressure.

The solidification is established by the density defor-
mations in the superfluid. We adopt the sound Hamil-
tonian Hs for the quadratic deformations. We add non-
linear terms by hand to Hs to describe the instability
to the finite wave amplitude state, i.e., the solid state.
The total Hamiltonian is then H = Ekin + W , where

Ekin =
m

2ρ1V

∑
�

|δρ̇�|2
k2

, (1)

W =
m

2ρ1V
(

∑
�∈D1

(ωph

�
)2

k2
+

∑
�∈D2

(ω̃r

�
)2

k2
) |δρ�|2

− b̃

3

∫
d3
�δρ(�)3 +

ũ

4

∫
d3
�δρ(�)4. (2)

Here Ȧ denotes time derivative of A, m the atomic
mass, V the volume of sample, k ≡ |�| and δρ(�) ≡
ρ(�) − ρ1 = 1/V

∑
� δρ� exp (i� · �) the number den-

sity deviation from the mean value ρ1 at position �.
First we shall concentrate on P = Pm, the melting

pressure, and determine the phenomenological param-
eters such as b̃, ũ > 0 in W . Regarding W as the ther-
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modynamic potential, or T−µ function, W = 0 both at
the uniform superfluid and at the uniform solid state.

The domain D1 is the photon domain where
the energy spectrum is approximated by ωph

�
=√

c2k2 + λ̃k4. The domain D2 is the roton domain,
but here we propose somehow novel form for the
roton spectrum in the ’hyperbolic’ fashion: ω̃r

�
=

c′
√

(k − G)2 + ∆2/(h̄c′)2. This spectrum is approxi-
mated by ∆/h̄ + h̄c′2(k − G)2/(2∆) near k = G, and
by c′|k−G| otherwise. G is the magnitude of the roton
minimum wave vector. The direct observation of roton
spectrum near P = Pm is not far from this form, and
suggests c′ = c [2]. The ’roton mass’ is ∆/c′2 = 0.11m
at Pm, which is occasionally close to the known value
0.13m. So we may safely use ω̃r

� instead of usual
parabolic roton spectrum at Pm. Later we will show
that this hyperbolic form for roton is naturally derived
for general pressures.

The advantage to take ω̃r
� is that (ω̃r

�)2/k2 in D2

has the same form as (ωph

�
)2/k2 in D1. This results in

the simple free energy functional (4) being symmetric
in ∇ξ and ∇η.

Since the superfluid crystallizes into hcp solid, we
assume
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δρ(�) =
1

V
δρ0(r) +

1

V
δρG(r)

M∑
n=1

ei�n·� (3)

with |�n| = G. We take summation by M = 6 on a
plane to realize the simple hexagonal reciprocal lattice.
The angle-independent envelopes δρ0(r) and δρG(r)
are introduced for the homogeneous nucleation of solid.

Substituting (3) into (2), and taking the dimension-
less parameters ξ ≡ δρ0/(ρ1V ) and η ≡ δρG/(ρ1V ),
we obtain W =

∫
d3
�w(ξ, η), where

w(ξ, η) = ϕ(ξ, η) + λ(∇ξ)2 + λ′(∇η)2 (4)

with λ′ ≡ mc′2ρ1/(2G2)M and λ ≡ mρ1/2λ̃. ϕ(ξ, η)
is the polynomial up to the 4th order in ξ and η. Be-
cause of the simplification (3), the expansion coeffi-
cients in (4) are completely determined by a few ex-
perimental data at Pm with the conditions ϕ(0, 0) =
ϕ(∆ξ,∆η) = (∂/∂ξ)ϕ(∆ξ,∆η) = (∂/∂η)ϕ(∆ξ, ∆η) =
0. Here (ξ, η) = (0, 0) and (∆ξ,∆η) are the values of
the superfluid and the solid respectively. Especially, the
characteristic energy density P0 ≡ mc2ρ1/2 = 115bar,
the smallness parameter ε ≡ ∆/(h̄c′G) = 0.13, the
dimensionless coefficients b ≡ b̃ρ3

1/P0 = 0.065, u ≡
ũρ4

1/P0 = 0.0038.
It is worthy to note that (λ′,∆η) are derived to be

(1.21[K/Å],0.73),while (λ,∆ξ) = (−3.60[K/Å],0.094)
in a direct measurement. Then |λ(∆ξ)2| << |λ′(∆η)2|.
This solves the paradox that λ < 0 may lead to the
negative surface energy σ at the solid-liquid inter-
face[3]: σ becomes positive here because of the pres-
ence of the energy of ∇η and gives a reasonable value.
From now on, we safely drop λ(∇ξ)2 from (4).

At pressures out of Pm, by putting ∆P ≡ P−Pm, the
density functional changes to ϕ(ξ, η; ∆P ) � ϕ(ξ, η) −
∆Pξ+O(ξ2). For all the pressures in question, we found
that the higher order terms in ξ are negligible, and ob-
tain ϕ in the form: ϕ/P0 = (ξ−D(η;∆P ))2+E(η; ∆P ).
That is, ϕ(ξ, η;∆P ) is parabolic increasing with ξ, and
then the instability to the solid state does not occur no
matter how the sound amplitude in D1 is large under
η = 0. The ’most probable’ path (MPP) ξ = D(η;∆P )
( ≡ 〈ξ〉 ) connects the superfluid state (ξ, η) = (ξ1, 0)
to the solid state (ξ1 +∆ξ,∆η) passing over the saddle
point. Here ξ1 ≡ ∆P/(2P0). (Remember ρ1 in scaling
ξ is the mean liquid density at Pm. Then ξ1 is finite at
P �= Pm.) If the solidification occurs quasi-statically,
it does along the MPP. For simplicity, we shall assume
that the solidification always goes along the MPP even
when it does kinetically.

On the MPP, expanding (4) up to, say, the 3rd order
in η, and neglecting constant, we have

w(〈ξ〉, η) � M(ε2 − b
∆P

2P0
)η2 +

2

3
Mbη3 + λ′(∇η)2. (5)

This means that the energy spectrum in D2 changes
to ω̃r

�(P ) defined by (ω̃r
�(P ))2/k2 ≡ (ω̃r

�)2/k2 −

b∆P/(2P0), and then

ω̃r
�(P ) = c′

√
(k − G)2 +

∆(P )2

h̄2c′2
. (6)

where ∆(P ) ≡ ∆
√

1 − α∆P/P0 with α ≡ b/(2ε2) �
1.9 and the ’roton mass’ is ∆(P )/c′2. The coincidence
of these roton parameters with experiment are satis-
factory from 0bar to Pm (!).

(5) predicts that the superfluid becomes unstable at
the spinodal pressure Pc ≡ Pm + 2ε2P0/b ≈ 85bar
where the roton gap vanishes. Near Pc, we adopt (5)
for the solid nucleation. By using η0 ≡ (Pc −P )/(2P0)

and R0 ≡
√

λ′/(P0η0), we scale the parameters χ ≡
η/η0 and � ≡ �/R0. Finally,

W = W0

∫
d3
� (

1

2
χ2 − 1

3
χ3 + (

∂χ

∂�
)2), (7)

where the pressure dependence is contained only in
W0 ≡ b′η3

0R
3
0P0 ∝ (Pc−P )3/2. The thermal nucleation

rate is then Wth ∝ exp{−(Pc − P )3/2}.
In this spinodal limit, we have

Ekin =
m

2G2
ρ1M

∫
d3
� η̇2, (8)

and then, using the scaled time τ = t/t0 with t0 ≡√
mρ1/(4bG2η0P0) ∝ (Pc − P )−1/2, the action S =∫
dt(Ekin + W ) is

S = S0

∫
dτd3

�[(
∂χ

∂τ
)2 + (

1

2
χ2 − 1

3
χ3 + (

∂χ

∂�
)2)] (9)

with S0 = W0t0 ∝ Pc − P . Then the quantum nucle-
ation rate is Wq ∝ exp{−(Pc − P )}.

These exponents in Wth and Wq are consistent with
experiment [4], [5] where the nucleation occurs on the
wall of container. Although it is dangerous to compare
our homogeneous result with these heterogeneous ones,
it is quite attractive to study these connections.
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