Correlation measures of the Calogero-Sutherland model at T = 0
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Abstract

We exploiting the exact results of the exact solution for the ground state of the one-dimensional spinless quan-
tum gas of Fermions with ,u/ac?j particle-particle interaction, and analyze particle-number fluctuations for p =
—1/4, 0, and 2. These are suppressed by repulsive interaction (p > 0), enhanced by attraction (u < 0), and
may therefore measure the kind and strength of correlation. Other recently proposed purely quantum-kinematical
measures of the correlation strength arise from the small-separation behavior of the pair density or from the non-
idempotency of the momentum distribution and its large-momenta behavior.
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In the following the fluctuation-correlation analysis
of our previous papers [1] is summarized and extended.
Usually the quantum-mechanical many-body problem
can be solved only approximately. Therefore, rare ex-
ceptions of exactly solvable model systems are highly
interesting for general discussions of fluctuations and
correlations. The Calogero-Sutherland (CS) model
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is such a system [2] describing interacting spinless
fermions in one dimension. In the thermodynamic
limit, the CS ground state has only two parameters,
the interaction strength parameter v > 0 (attraction
for v < 1/2, repulsion for v > 1/2) and the particle
density n or the Fermi wave number kr = 7n. Its
quantum-kinematical characteristics are (i) the pair
density (PD) g(z12) with the interparticle distance
z12 measured in units of k' and (ii) the momen-
tum distribution (MD) n(k) with the momentum k&
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measured in units of kr. Important properties (sum
rules) of the PD and the MD are g(0) = 0, g(o0) =1,
[ % 1—g(x)] =1,0 < n(k) <1 (non-idempotency)
and fooo dk n(k) = 1. v = 1/2 describes the ideal spin-
less one-dimensional Fermi gas with the ideal Fermi
hole g(x) = 1 — (sinxz/x)? and the ideal Fermi ice
block n(k) = ©(1 — k).

Pair Density, Fluctuations, and Correlations: The
PD is known analytically [2] for v = 0 (attraction)

sin x\ 2 d sinz 1w d sinz
f— _— 1 —_— —_—— — 2
9() ( T ) +Si(@) dx =x 2dr x (2)
and for v = 3/2 (repulsion)
sin 2z 2 d sin2z
9(@) ( 2x ) +8i(22) d(2z) 2z (3)

The exponent of the small-z behavior g(x — 0) ~
2T is o = 2v — 1. The deviations of (2) and (3)
from the ideal Fermi hole indicate the attraction and
repulsion induced correlation, respectively. Besides one
may ask to what extent correlation influences particle-
number fluctuations ANx in a domain X, i.e., a certain
interval of the x axis, where in the average there are
Nx = nX particles. These fluctuations are measured
quantitatively by [3]

21 June 2002



X X
2 f—
Lf\\;{j) —1- %/dwl/dmil ooz
0 0

The results are shown in Fig. 1, where also the case
v — oo ("strict” or ”perfect” correlation) [3] is dis-
played, the oscillations of which have a weak precur-
sor already for v = 3/2. The particle-number fluc-
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Fig. 1. Particle-number fluctuation (ANx )2 /Nx in domains
X of the CS model after Eq. (4) for v = 0 (dashed), 1/2
(solid), and 3/2 (dotted). The dashed-dotted line corresponds
to (ANx)? /Nx for strict correlation. [3]

tuations are suppressed due to repulsive particle in-
teraction [3], but enhanced due to attractive parti-
cle interaction. Correlation makes the particle-number
distribution Px(N) with Nx = »_, Px(N)N and
(N*)x = Y Px(N)N? more narrow for repulsion
(v > 1/2) and more broad for attraction (v < 1/2). We
remark that fluctuation enhancement (induced by at-
tractive interaction) generally may support/cause clus-
terings (e.g., paramagnons prior the paramagnetic-to-
ferromagentic phase transition). In our case, this ten-
dency shows up in the sudden ”fall-into-the-origin” at
v = 0, where also the kinetic and the potential energy
diverge (because of the large-k behavior of n(k) and
the small-z behavior of g(x)), but such that their sum
is finite.

Momentum Distribution and Correlations: The MD
for v = 0 and v = 3/2 is evaluated numerically by us-
ing the connection with random matrix theory as out-
lined in Refs. [2,1]. For v # 1/2 the interaction induced
melting of the Fermi ice block near k = 1 is described
by |n(k) — 1/2| ~ |k — 1|° with a critical exponent
B, which has been computed from conformal field the-
ory to be 3 = 1(1 — 2v)?/(1 + 2v) [2]. Other from
n(k) derived correlation measures are the (2nd-order)
non-idempotency ¢ = fooo dk n(k)[1 — n(k)] [4,5], the
correlation entropy s = fooo dk (—=1){n(k)Inn(k) +
[1 —n(k)]In[1 —n(k)]} [5,6], and the tail normalization
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Fig. 2. Correlation measures shown as functions of v. The solid
lines are guides to the eye only. The thin dashed-dotted line
indicates the “fall-into-the-origin” at v = 0.

Ngail = floo dk n(k). Note the invariance of ¢, s, and of
the critical behavior near the Fermi edge under the ex-
change n(k) < 1 — n(k). This particle-hole symmetry
is important for the recently developing density ma-
trix functional theory [7,8]. n(k) and 1 — n(k) are the
probabilities for the momentum state k£ to be occupied
and empty, respectively. The entropy of this probabil-
ity ‘distribution’ is just the integrand of s which is the
sum of all these entropies. [6]. Note that the above in-
troduced PD exponent « also describes the MD asymp-
totics n(k — oo) ~ 1/k*T. Fig. 2 shows the inter-
action induced MD characteristics «, 3, ¢, S, Nitail VS. V.
Only the exponent « is sensitive against the sign of
the particle interaction (attraction, repulsion) like the
particle-number fluctuations (ANx)?, cf. Fig. 1.
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