

Vortex state of a 2D Josephson junction array at irrational frustration

In-Cheol Baek ^a, Young-Je Yun ^a, Mu-Yong Choi ^{a,1}

^a BK21 Physics Division and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746, Korea

Abstract

IV characteristics of a 2D Josephson junction array are studied experimentally at frustrations $f = 0.382$, as an approximation of the irrational filling $f = (3 - \sqrt{5})/2$, and its nearby rationals $3/8$, $8/21$, and $2/5$, with a focus on the irrational frustration. For all four frustrations, the *IV* characteristics exhibit a scaling behavior, indicating a finite-temperature continuous superconducting transition. Scaling analyses show that the critical behaviors for $f = 0.382$ are similar to those of $f = 3/8$, $8/21$, and $2/5$. The finite transition temperature and the similarity in critical behaviors suggest that the vortex state at the irrational frustration is not a vortex glass but possibly an ordered phase with a configuration which can be viewed as an interpolation between the states for $f = 3/8$ and $f = 2/5$.

Key words: Vortex state; Irrational frustration; Josephson junction array; Frustrated XY model

For two-dimensional (2D) Josephson junction arrays (JJAs), frustration without disorder can be introduced by applying an external magnetic field. In the presence of frustration, a finite density of vortices are induced in the array as a function of the frustration parameter f , the fraction of a flux quantum per plaquette. Possible glassy natures of the vortices at irrational frustration have drawn particular interest for many years since they are exotic glasses without any intrinsic randomness [1–5]. Halsey [1] claimed that vortices form a metastable glass for $f = (3 - \sqrt{5})/2$ below some finite temperature. Other arguments, however, suggest a zero-temperature glass transition in 2D [2,6]. Recent numerical studies [3] show that vortices at the irrational frustration undergo two separate transitions: a sharp first-order phase transition to an ordered state with incoherent phase and a vortex pinning transition at a lower temperature. A single finite-temperature transition to an ordered phase with periodically-distributed parallel domain walls has also been suggested by a different numerical work [4].

Details of the vortex states obtained by numerical efforts have been found to strongly depend upon the imposed boundary condition. There have been very few experimental works on the issue [5]; they agree on a finite-temperature superconducting transition. The experiments were performed on superconducting wire networks where fluctuations are much weaker than in JJAs; therefore, the behavior is suspected to be dominated by a mean field transition [2]. In this paper, we present an experimental investigation of the vortex state of a proximity-coupled JJA at $f = 0.382$, as an approximation of the irrational frustration $f = (3 - \sqrt{5})/2$, and its nearby rationals $f = 3/8$, $8/21$, and $2/5$ by examining scaling behaviors of the *IV* characteristics.

The experiments were performed on a square array of 200×1000 Nb/Cu/Nb Josephson junctions described in Ref. [7]. The zero-field superconducting transition was completed at $T_{KT} = 6.24$ K with a transition width ~ 0.4 K. The frustration was adjusted from the resistance minima at simple fractional fs of the magnetoresistance curve of the sample. The standard four-probe technique utilizing a transformer-coupled lock-in volt-

¹ Corresponding author. E-mail: mychoi@skku.ac.kr

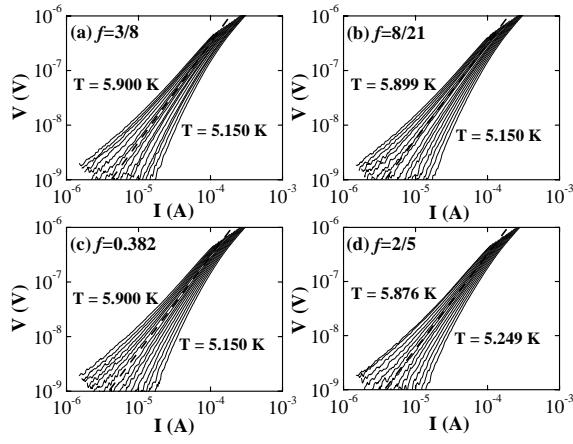


Fig. 1. IV characteristics for four different frustrations: (a) $f = 3/8$, (b) $f = 8/21$, (c) $f = 0.382$, and (d) $f = 2/5$. The dashed lines are drawn to show the power law ($V \sim I^{z+1}$) behavior at the critical temperatures.

meter with a square-wave current at 23 Hz was adopted for the IV characteristics measurements.

Fig. 1 shows the IV curves for four different frustrations $f = 3/8, 8/21, 0.382$, and $2/5$. The IV curves at high temperatures are concave upward. At low temperatures, the curves become progressively more concave downward. The temperature dependence of the IV curves meets the criterion proposed by Strachan *et al.* [8] for IV data supporting a superconducting transition. The IV data indicate that for all these f s the sample experiences a superconducting transition at temperatures where straight IV curves appear. If the transition is continuous, the IV data are expected to satisfy the scaling relation in 2D, $V/I|T - T_c|^{z\nu} = \mathcal{E}_\pm(I/T|T - T_c|^\nu)$ [9]. The scaled IV data are shown in Fig. 2. We find the four sets of data exhibit good scaling behaviors, which confirms a finite-temperature superconducting transition for $f = 0.382$, as well as for $f = 3/8, 8/21$, and $2/5$. The critical exponents ν and z for $f = 0.382$ are identical, within experimental errors which are 0.1 for ν and 0.05 for z , with those for $f = 3/8, 8/21$, and $2/5$, but not with those for $f = 1/3$ [7], $5/12$ [10], and $1/2$ [7]. We also found from the scaling analyses that not only are the critical exponents similar for $f = 3/8, 8/21, 0.382$, and $2/5$ but the scaling functions are also.

The finite-temperature superconducting transition at $f = 0.382$ and the similarity in scaling behaviors at $f = 3/8, 8/21, 0.382$, and $2/5$ indicate that the vortex state at the irrational frustration is not a vortex glass but possibly an ordered phase of pinned vortices with a configuration which can be viewed as an interpolation between the states for simple rational frustrations $f = 3/8$ and $2/5$. This finding seems to be compatible with the numerical results of Denniston and Tang [4], which indicate a single finite-temperature phase tran-

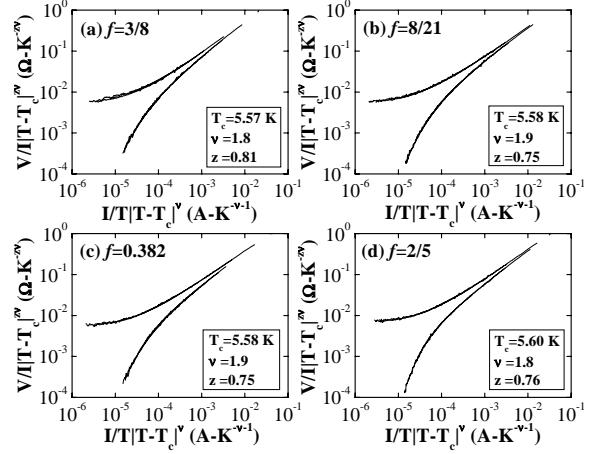


Fig. 2. Scaling plots of the IV curves. The values of T_c , ν , and z used to scale the data are shown in the insets.

sition for the irrational frustration to a striped phase consisting of domains of $f = 8/21$ phase separated by parallel walls. The $f = 8/21$ phase has a vortex configuration which can be viewed as a combination of the configurations for $f = 3/8$ and $f = 2/5$. Our observations are, however, inconsistent with other numerical works predicting two separate finite-temperature phase transitions [3] or a zero-temperature glass transition [2]. The discrepancies are possibly, as suggested by Denniston and Tang [4], from the imposition of a periodic boundary condition that is incompatible with incommensurate or long-period commensurate phases.

This work was supported by the BK 21 program of the Ministry of Education.

References

- [1] T. C. Halsey, Phys. Rev. Lett. **55** (1985) 1018.
- [2] E. Granato, Phys. Rev. B **54** (1996) R9655.
- [3] P. Gupta, S. Teitel, M. J. P. Gingras, Phys. Rev. Lett. **80** (1998) 105; M. R. Kolahchi, H. Fazli, Phys. Rev. B **62** (2000) 9089.
- [4] C. Denniston, C. Tang, Phys. Rev. B **60** (1999) 3163.
- [5] F. Yu, et al., Phys. Rev. Lett. **68** (1992) 2535; X. S. Ling, et al., Phys. Rev. Lett. **76** (1996) 2989.
- [6] C. Dekker, P. J. M. Wöltgens, Phys. Rev. Lett. **69** (1992) 2717.
- [7] Young-Je Yun, In-Cheol Baek, Mu-Yong Choi, Phys. Rev. Lett. (to be published).
- [8] D. R. Strachan, et al., Phys. Rev. Lett. **87** (2001) 067007.
- [9] D. S. Fisher, M. P. A. Fisher, D. A. Huse, Phys. Rev. B **43** (1991) 130.
- [10] We found that for $f = 5/12$, $T_c = 5.52$ K, $\nu = 1.9$, and $z = 0.89$.