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Abstract

The stability and the critical properties of the three-dimensional vortex-glass order in random type-II supercon-
ductors with point disorder is investigated in the unscreened limit based on a lattice XY model with a uniform
field. By performing equilibrium Monte Carlo simulations for the system with periodic boundary conditions, the
existence of a stable vortex-glass order is established in the unscreened limit. Estimated critical exponents are
compared with those of the same model with free boundary conditions and with those of the gauge-glass model.
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In spite of extensive studies for a decade, the question
of nature of the thermodynamic phase diagram of high-
Tc superconductors has remained unsettled. For ran-
dom superconductors with point disorder, possible ex-
istence of an equilibrium thermodynamic phase called
the vortex-glass (VG) phase, where the vortex is pinned
on long length scale by randomly distributed point-
pinning centers, was proposed [1]. In such a VG state,
the phase of the condensate wavefunction is frozen in
time but randomly in space, with a vanishing linear
resistivity ρL. It is a truly superconducting state sep-
arated from the vortex-liquid phase with a nonzero ρL

via a continuous VG transition.
Since cuprate high-Tc superconductors are exremely

type-II superconductors where the London penetra-
tion depth λ is much longer than the coherence length,
it is important to clarify first whether the proposed
VG state really exists in the type-II, unscreened limit
λ → ∞. Indeed, stability of the hypothetical VG state
has been studied quite extensively by numerical model
simulations [2–8]. Many have been based on a highly
simplifed model called the the gauge-glass model. Pre-
vious simulations on the 3D gauge-glass model gave
mutually consistent results that a continuous VG tran-
sition occured at a finite temperature characterized by
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the critical exponents, ν � 1.3, η � −0.5, z � 4 − 5,
which was compared with experiments favorably[2–5].

Meanwhile, the gauge-glass model has some draw-
backs [2]. It is a spatially isotropic model without a net
field threading the system, in contrast to the reality.
Furthermore, source of quenched randomness is arti-
ficial. The gauge-glass model is a random flux model
where the qeunched randomness occurs in the phase
factor assoicated with the flux. In reality, the quenched
component of the flux is uniform, nothing but the ex-
ternal field, and the quenched randomness occurs in
the superconducting coupling or the pinning energy. It
remains unclear whether these simplifications under-
lying the gauge-glass model really unaffect the basic
physics of the VG ordering in 3D.

Recently, several simulations were performed beyond
the gauge-glass model[6–8]. The present author studied
the type of the lattice XY model where the above lim-
itations of the gauge-glass model were cured[6]. While
the VG state was found to be stable, the estimated
critical exponents, particularly ν � 2.2, differed sig-
nificanly from those of the gauge-glass model, posing
a possibility that the gauge-glass model lies in a dif-
ferent universality class. However, due to the effect of
free boundary conditions employed in Ref.[6], the es-
timated critical exponents might possibly be subject
to large surface effect. Vestergren et al studied a ran-

Preprint submitted to LT23 Proceedings 13 June 2002



dom pinning model which took care of the above limi-
tations of the gauge-glass model in a different way, to
obtain a finite-temperature VG transition character-
ized by the exponents, ν � 0.7, z � 1.5[7], which dif-
fered significantly from either those of Ref.[6] or from
those of the gauge-glass model[3–5]. Olsson and Teitel
claimed on the basis of their simulations on the lattice
XY model with weak disorder that the VG order was
not stable even in the unscreened limit[8]. Thus, once
one wishes to go beyond the gauge-glass model, the
present theretical situation seems quite confused.

In the presnet paper, we study the lattice XY model
of Ref.[6], but now with applying periodic boundary
conditions, to overcome the type of the finite-size (sur-
face) effect of Ref.[6]. We consider the Hamiltonian,

H = −
∑

<ij>

Jij cos(θi − θj − Aij), (1)

where θi is the phase of the condensate at the i-th
site of a simple cubic lattice with N = L3 sites, and
the sum is taken over all nearest-neighbor pairs. Aij is
the link variable associated with the vector potential
due to uniform external magnetic field of intensity h
applied in the z-direction. In the Landau gauge, it is
given by Ai=(Ax

i ,Ay
i ,Az

i )=(0,hix,0), where 1 ≤ ix ≤ L
denotes the x-coordinate of the site i. Quenched ron-
domness occurs in the superconducting coupling Jij

which is assumed to be an independent random vari-
able uniformly distributed between [0,2J ], J > 0 be-
ing a typical coupling strength. Note that the present
choice of Jij corresponds to very strong randomness.
In contrast to Ref.[6] where free boundary conditions
were imposed in order to allow for the flux penetration
into and out of the sample, I impose periodic bound-
ary conditions in all directions in order to eliminate
surface ‘spins’ which might contaminate the bulk crit-
ical behavior of present interest. The field intensity is
chosen to be h = 2π/4 (f = 1/4), and the lattice sizes
are taken to be multiples of four, i.e., L = 8, 12, 16
and 20. Simulation is performed based on the exchange
MC method. Sample average is taken over 100-980 in-
dependent realizations of Jij .

In Fig.1, I show the Binder ratio (the definition given
in Ref.[6]). As can be seen from the figure, g(L) for
different L cross at T/J = 0.82(3), indicating that
the VG transition occurs at a finite temperature. Note
that the present data show a rather clear splay-out,
in contrast to the near marginal merging behavior ob-
served for the case of free boundary conditions[6]. Via
a finite-size scaling analysis of g(L), the correlation-
legth exponent is estimated to be ν = 1.2(3). Then,
from the finite-size scaling analysis of the VG order
parameter and the VG autocorrelation function (not
shown here), the critical-point-decay exponent and the
dynamical exponent are determined to be η = 0.1(3)
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Fig. 1. Temperature and size dependence of the Binder ratio

associated with the vortex-glass order parameter.

and z = 3.8(8), respectively. On comparing these expo-
nents with the values obtained for the system with free
boundary conditions, one sees that they differ consid-
erably. Thus, in the range of lattice sizes studied here,
the application of either periodic or free boundary sig-
nificantly influences the estimates of critical exponents.
If one compares the present estimates with those of the
the gauge-glass model (with periodic boundary), the ν
value comes rather close while the η value differs some-
what. Hence, the issue of whether one can safely regard
the gauge-glass model as a true representive model of
the universality class of real VG transitions still re-
mains ambiguous.

In view of the large deviations observed among the
estimated critical exponents of different models and of
different boundary conditions, further careful studies
seem required to fully resolve the issue of the univer-
sality class of 3D VG transition. Meanwhile, in view of
the clear crossing behavior observed in the Binder ra-
tio, the existence of a finite-temperature VG transition
in the unscreend limit λ → ∞ seems well established.
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