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Abstract

Localization effect on the dynamical conductivity σ(ω) is examined in quantum dots and disordered electron
systems. For the small volume limit, which is well described by the random matrix theory, Re[σ(ω)] is known
to be proportional to the DOS correlator 〈ν(E)ν(E + ω)〉, hence to the universal two-level correlator R2(ω/∆).
Looking at localization effect, however, reveals the discrepancy between Re[σ(ω)] and 〈ν(E)ν(E + ω)〉, because
only the former, not the latter, is consistent with the logarithmic weak localization correction on 2D and its RG
treatment. We investigate and clarify the issue by evaluating the linear response σ(ω) directly from the nonlinear
sigma formulation.
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1. Introduction

The dynamical conductivity σ(ω) for an isolated
quantum dot characterizes the absorption of the mate-
rial and can be obtained by either optical or transport
measurements. For higher frequency, σ(ω) has a Drude
form

σ(ω) =
σs(ω)

1 − iωτ
. (1)

σs(ω) is determined by the slow (diffusive) kinetics ω �
1/τ and affected by the localization effect. In this pa-
per, we clarify the interplay between quantum size ef-
fect observed typically in the region ω � ∆, and the
weak localization effect upon σs(ω).

In an isolated small quantum dot with discrete en-
ergy levels, one needs to resort to some nonperturba-
tive method to take account of the oscillating behavior
for ω � ∆. In the small volume limit (the 0D limit),
weak localization effect is negligible, so that the two-
point DOS correlator is well described by the Wigner-
Dyson’s universal correlator RWD

2 (s = ω
∆

),
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∆2
R2(s) := 〈ν(E + ω)ν(E)〉 → 1

∆2
RWD

2 (s).

Besides, following the idea of the Gorkov-Eliashberg
theory, the average of the matrix elements may be
taken independently. If one assumes so, σs(ω) is ex-
pected to behave as

Re σs(ω) ≈ πe2〈v2〉
V

〈ν(E + ω)ν(E)〉 = σ0R
WD
2 (s), (2)

where σ0 is the classical conductivity. Note that the
above form consistently incorporates no absorption in
an isolated system without any broadening for ω � ∆,
with the classical value σ0 expected for ω � ∆.

One may further conjecture that there exists some
intermediate region that σs(ω) can be approximated by
the DOS correlator R2(s) outside the strict 0D limit, if
the system is so small that the localization correction
gives little influence. If this were to be the case, the lo-
calization correction of Re σs(ω) (especially for ω � ∆)
should be more like that of R2(s) obtained in Ref. [1],

Re σs(ω)

σ0

(??)≈ R2(s) ≈ 1 +
1

β
Π2(ω), (3)
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Πk(ω) =
�

q

Πk(q, ω); Π(q, ω) =
1

πg
· L−2

q2 − iω/D
, (4)

Note that while Π1(ω) diverges logarithmically for d →
2, Π2(ω) stay finite in this limit, so no logarithmic de-
pendence expected on 2D.

The above surmised form of “the weak localization
correction” in a small volume system strongly contrasts
with the conventional weak localization perturbation
results, which is applicable to ω � ∆, showing the
logarithmic divergence on 2D.

σs(ω)

σ0
=

��
�

1 +
2ε

d
Π2

1(ω) + · · · (β = 2)

1 − Π1(ω) + · · · (β = 1)
. (5)

The issue we address here is to clarify whether such
a non-standard weak localization effect suggested by
Eq. (3) is possible in a non-perturbative region ω � ∆
or not. We directly evaluate σs(ω) by using the effective
field theory (the supermatrix NL-σ model) to accom-
modate the nonperturbative effect correctly. It will be
shown that the logarithmic behavior similar to Eq. (5)
is always expected on 2D, irrespective of ω � ∆ or ω �
∆, hence no behavior of Eq. (3). Though the assump-
tion of the independent fluctuations between levels and
matrix elements is appropriate at g = ∞, it fails even
at very large g, which no longer leads to Eq. (3). Below
we present all results for the unitary case (β = 2).

2. Results and conclusion

In order to treat the nonperturbative effect of ω, we
use the supermatrix NL-σ model defined on G/K [2],

L[Q] = σ0L0[Q] + iω Lω[Q], (6)

L0[Q] =
1

4
STr

�
(∇Q)2

�
; Lω[Q] =

πν

2
STr [QΛ] . (7)

We define and evaluate the observable conductivity
σs(ω) by the response to the external (background)
gauge field, following [3,4]. The effect of the background
gauge field A = g−1∇g is incorporated into the action
by the gauge transform of the Q-matrix, Q → gQg−1 .
Because of the symmetry of the theory, “the partition
function” Z[A] for any choice of external A should be
of the form

Z[A] =

�
DQ exp

��
σ0L0[gQg−1] + iωLω [gQg−1]

�

= exp

��
σs(ω)L0[gΛg−1] + iωLω [gΛg−1]

�
,

whose RHS defines σs(ω) within the effective field the-
ory, comparing between both sides up to O(A2). Next,
following the prescription of Ref. [4], the choice of A

is symmetrized to get a tractable formula. Note that
unlike a replica NL-σ method, a careful attention is
needed in symmetrization, which leads to a small yet
important modification [5]. Eventually we can show
that σs(ω) is expressed by

σs(ω) − σ0

σ0
= − 1

16V

	�
STr 2 (kQ)



Q

− σ0

32V

	
STr

��
kQ∂iQ

�
kQ∂iQ

�

Q

(8)

where k = diag(1,−1) in the BF block. The above
expression of σs(ω) is valid within the same validity
of the supermatrix theory, which allows us to apply
any nonperturbative evaluation of the Q-matrix inte-
gral. Whereas the first local contribution of Eq. (8) was
missing in the replica method, its presence is of criti-
cal importance for our purpose here. It shows a direct
connection between σs(ω) and the inverse participa-
tion ratio, as well as being responsible for reproducing
RWD

2 (s) in the 0D limit [5].
A reliable estimate of the weak localization correc-

tion for a small volume system can be obtained by tak-
ing account of the weak localization effect around the
0D limit [6]. After some calculations, the result for the
unitary case is summarized as follows.

σs(ω)

σ0
= R(s)

�
1 +

2ε

d
Π2

1(ω) − 4(d + 3)

d
Π2(ω)

�

− 2

iπs

ε

d
Π1(ω) +

�
4ε

d
sR′(s) + s2R′′(s)

�
Π2(ω) + · · · ,(9)

where we introduce the complexified R2(s) function as

R(s) := 1 +
e2iπs − 1

2π2s2
; Re [R(s)] = RWD

2 (s). (10)

It shows that the weak localization effect is always dom-
inated by εΠ2

1(ω). Since the ε-factor is canceled out par-
tially with the dimensional pole ε−2 from Π2

1, it gives a
usual logarithmic behavior of the order of O(1/g2) in
the unitary case, and all the nonperturbative effect of
ω is incorporated in R(s).
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