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Abstract

The conditions of formation of the static polaron and quasipolaron states due to the rotational degrees of freedom
in molecular cryocrystals are theoretically investigated. It is shown the two types of behavior are realized for the
nearest to the carrier molecules in dependence on the parameter G (the ratio of amplitudes of the anisotropic parts
of interaction energy of the molecule with the carrier electric field and the molecular field): free rotation or kicking
of the molecules. The small polaron energy are evaluated for the cryocrystals H2 and compared to the experimental
data.
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The quantum molecular cryocrystals have new for
polaron theory the rotational degrees of freedom [1],
[2]. Last experiments dealing with electron and muon
mobility in different cryocrystals show strong particle
localization into a small polaron[3]. In the present pa-
per the small polaron states of charged carrier (elec-
tron, hole, muon), localized on one molecule in oriental
ordered solid ortho-H2 phase is considered.

Hamiltonian of the system under consideration in-
cludes He the kinetic energy of carrier, Hl the energy
of interaction between molecules, Hel the energy of
carrier-lattice interaction. Let us represent intermolec-
ular interaction in the solid H2 in the following manner:
Hl =

∑
(UHi −UHa(θ)), where UHi is isotropic part of

interaction, UHa is amplitude of anisotropic one; sum
is for different neighbors. The main anisotropic con-
tribution gives electric quadrupol-quadrupol interac-
tion [2]. Note, H2 crystal with high concentration of
ortho-hydrogen at T ≤ 2.9 K has FCC structure with
molecular axes frozen along space diagonals (θ = 0) of
cubic cell (Pa3) [2]. We use the experimental value of
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the barrier for rotation only (7.49K in case of interac-
tion with one molecule [2] and 89.4K for 12 neighbors).
The carrier-lattice interaction Hel =

∑
Wel is sum for

the neighbors of interaction of the charge with induced
dipole moment and intrinsic quadruple moment Q of
the molecule [4]. It can be written as sum of isotropic
and anisotropic contributions:

Wel = Vi − Vacos2Θ;

Vi = −α2q
2

2R4
− Qq

4R3
; Va =

(α1 − α2)q
2

2R4
− 3Qq

4R3
.

(1)

Here components of the polarizability tensor are α1

along and α2 normal to molecule axe; q = ±e is charge
of the carrier; R is distance between molecules, Θ is
angle between E and molecular axe.

The main parameter of the considered problem: G ≡
1
g = Va

Ua
. Using crystal H2 parameters ( α1 − α2 =

0.316A3, α2 = 0.701A3, Q = −0.6∗10−26CGS, R =
3.80A [2]) one can obtain g = 0.113 (positive q); g
= - 0.165 (negative q). It means the main influence
onto behavior of the nearest neighbors has the carrier
electric field. The sign of Va depends on the sign of q:
for positive q (hole, muon) Va is positive; for negative
q (electron) Va is negative. Therefore positive q yields
equilibrium molecular orientation along E; negative q
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Fig. 1. The space dependence of the orientation energy of

molecules. The maximum energy (zero level) is in the center of

each molecule figure. Negative values of the energy are more

remote from the center. (Left panel) positive q (hole, muon).

(Right panel) negative q (electron).

yields the indifferent equilibrium state with molecular
axe normal to E (see Fig.1). The last situation means
the free rotation of the molecule is realized.

The Schrodinger equation for each molecular rigid
rotator orientation in main approximation has ax-
ial symmetry. The wave function can be represented
in form Ψ(θ, φ) = Θ(θ) ∗ Φ(φ) where Φm(φ) =
(2π)−1/2exp(imφ),m = 0,±1,±2, ..., θ for each
molecule is counted from polar axe oriented along
E. Then for Θ(θ) we obtain equation well known in
special function theory [5] with rotational constant
B = h̄2/2J = 85.25K of H2 molecule [2]. We evaluate
the energies as classic ground state value plus energy
W0 of the zero-point vibration:

Welp = −Vap − Vip + W0p;

Weln = 0 − Vin + W0n;
(2)

where index p or n means positive or negative carrier.
The different classic ground state leads in quantum
case to the qualitatively different eigenfunctions and
eigenvalues of the Schrodinger equation. Anyway clas-
sic relation Welp < Weln (ground state of the positive
carrier is deeper) is keeping in quantum case in spite of
W0p ≈ 2W0n > 0. The last draft relation is due to the
fact of free rotation of the molecule around one local
axe E in main approximation for negative carrier.

The polaron energy is:

Wpolq = Z1Welq + Z2Welq2 + Wq; (3)

where index q means index p or n, Z1 = 12, Welq and
Z2 = 6, Welq2 are the number and energy of the nearest
and next to the nearest neighbors respectively, Wq >
0 is the change of eigenenergy of the ground state of
particle in the autolocalization potential.

Calculations give the best localization conditions in
the case of the heavy and positive muon. The localiza-
tion condition for more light hole is worse. The local-
ization condition for light and negative electron is on
the edge of the small polaron existence and need more
accurate investigation, the experimental data [3] show
relatively low electron mobility (stronger localization)
in the solid hydrogen.
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