

Monte Carlo Study of Pseudo-Gap Temperature T^* within JJA Model

C. Kawabata ^{a,*}, M. Takeuchi ^a, N. Hayashi ^b, F. Ono ^c, S. R. Shenoy ^d, A. R. Bishop ^e

^aFaculty of Environmental Science and Technology, Okayama University, Okayama 700-8530, Japan

^bComputer Center, Okayama University, Okayama 700-8530, Japan

^cDepartment of Physics, Okayama University, Okayama 700-8530, Japan

^dCondensed Matter Group, Abdus Salam International Centre for Theoretical Physics, Trieste 34100, Italy

^eTheoretical Division, Los Alamos National Laboratory, Los Alamos, NM87545, U.S.A.

Abstract

We study pseudo-gap temperature T^* of high- T_c superconductors by a Monte Carlo simulation of anisotropic 3D Josephson Junction Array (JJA) model based on the Ginzburg-Landau theory. We investigate T^* both in the cases of zero external current and finite external current I in the JJA. It is found that, the external current I depresses only a little the pseudo-gap temperature T^* , while the superconducting critical temperature T_c is much affected by I .

Key words: Pseudo-gap temperature, High- T_c cuprate superconductor, Josephson Junction Array model, Ginzburg-Landau theory

Much attention has been focused on the pseudo gap of high- T_c cuprate superconductors. On the basis of the Josephson Junction Array (JJA) model for the high- T_c cuprate superconductors [1-4], we have investigated the pseudo-gap temperature T^* and the superconducting critical temperature T_c . In this paper, we report our result of the Monte Carlo simulation for the effect of the external current I on T^* and T_c .

We model the ceramic high- T_c materials as a JJA which consists of weakly coupled superconducting grains on an anisotropic 3D lattice (i.e., a stack of 2D-lattice layers) [1-4]. The grain at the lattice site i is characterized by the phase θ_i and the amplitude $|\phi_i|$ of the superconducting order parameter $\phi_i = |\phi_i| \exp(i\theta_i)$.

In previous papers [5,6], we performed the Monte Carlo simulation with a Hamiltonian in which only the phase θ_i was taken into account, and could investigate the effect of I on T_c only. In this paper, we investigate not only T_c but also T^* by considering both the phase

θ_i and the amplitude $|\phi_i|$. Our effective Hamiltonian is given as

$$F_{\text{eff}} = F(\{\theta_i, |\phi_i|\}) - T \sum_i \ln(|\phi_i|) \\ = F_0 + F_1 - T \sum_i \ln(|\phi_i|), \quad (1)$$

where

$$F_0 = - \sum_{i,j} |\phi_i|^2 [\cos(\theta_i - \theta_j) - 1] \\ - \alpha \sum_{i,k}^{\prime} |\phi_i|^2 [\cos(\theta_i - \theta_k) - 1] \\ - \sum_{i,j} I \cdot [\theta_i - \theta_j], \quad (2)$$

$$F_1 = \frac{1}{2} \sum_{i,j} (|\phi_i| - |\phi_j|)^2 \\ + \frac{\alpha}{2} \sum_{i,k}^{\prime} (|\phi_i| - |\phi_k|)^2$$

* Corresponding author. Fax: +81-86-273-6750
Email address: kawabatact@nifty.com (C. Kawabata).

$$+ \frac{A}{2} \sum_i [- (1 - T/T_0) |\phi_i|^2 + \frac{1}{2} |\phi_i|^4]. \quad (3)$$

Here, $\sum_{i,j}$ means the summation over the neighboring intra sites in a 2D layer and $\sum'_{i,k}$ over the neighboring inter sites between the layers. The parameter α of the system anisotropy corresponds to Γ^2 of Ref. [7]; $\alpha \rightarrow 1$ (3D limit) and $\alpha \rightarrow 0$ (2D limit). The parameter A corresponds to $(a_{\parallel}/\xi_{\parallel})^2$ and T_0 corresponds to T'_{MF} [7]. T is the temperature. The external current I is defined in Refs. [5,6].

We perform the Monte Carlo simulation on the 3D JJA system [Eqs. (1)–(3)] with $A = 1$ and the anisotropy ratio $\alpha = 0.01$. The system size is $20 \times 20 \times 20$ with periodic boundary conditions. T_c is defined as the temperature at which the susceptibility $\chi = \sum_{i,j} \langle \cos \theta_i \cos \theta_j \rangle$ diverges [5,6]. The symbol $\langle \dots \rangle$ represents the statistical average. T^* is defined as the temperature at which $\sum_i \langle |\phi_i| \rangle = 0$. In Table 1, we show the result obtained by the Monte Carlo Simulation. It is noticeable that, while the superconducting critical temperature T_c is much affected by I (namely, $\sim 50\%$ decrease of T_c), the external current I depresses only a little the pseudo-gap temperature T^* . We have also performed the simulation with $\alpha = 0.001$ and 10^{-4} , and found that the results depended only a little on the anisotropy ratio α .

We hope that this result (i.e., the difference in the I sensitivity between T^* and T_c) can be observed experimentally by applying the external current to the high- T_c cuprate superconductors and simultaneously measuring the pseudo-gap temperature and the superconducting critical temperature. Such observations are expected to be helpful to identify the origin of the pseudo gap in the high- T_c cuprates, i.e., to identify whether or not the separation between the pseudo-gap temperature and the superconducting critical one is described by the anisotropic 3D JJA- and XY(phase)-model scenarios [1–8] for the superconductivity in the high- T_c cuprates.

References

- [1] C. Kawabata, S. R. Shenoy, A. R. Bishop, in: P. Vincenzini (Ed.), *Advances in Science and Technology 8, Superconductivity and Superconducting Materials Technologies*, Techna, Faenza, 1995, p. 13.
- [2] C. Kawabata, S. R. Shenoy, A. R. Bishop, *Bulletin of the Electrotechnical laboratory* vol.58, no.6, AIST, Tsukuba, 1994, p. 426.
- [3] C. Kawabata, in: K. Yamafuji, T. Morishita (Eds.), *Advances in Superconductivity VII*, Springer-Verlag, Tokyo, 1995, p. 233.
- [4] C. Kawabata, S. R. Shenoy, A. R. Bishop, in: T. Fujita, Y. Shiohara (Eds.), *Advances in Superconductivity VI*, Springer-Verlag, Tokyo, 1994, p. 55.

Table 1

The pseudo gap temperature T^* and the superconducting critical temperature T_c vs the external current I obtained by the Monte Carlo Simulation. The parameter $A = 1$. The anisotropy ratio $\alpha = 0.01$.

I	0	0.5	1.0
T^*	0.26	0.24	0.22
T_c	0.09	0.09	0.05

- [5] C. Kawabata, M. Takeuchi, S. R. Shenoy, A. R. Bishop, *J. Phys. Soc. Jpn.* **69** (2000) 194.
- [6] C. Kawabata, M. Takeuchi, S. R. Shenoy, A. R. Bishop, in: H. Hayakawa, Y. Enomoto (Eds.), *Advances in Superconductivity VIII*, Springer-Verlag, Tokyo, 1996, p. 271.
- [7] A. K. Nguyen, A. Sudbø, *Phys. Rev. B* **60** (1999) 15307.
- [8] V. J. Emery, S. A. Kivelson, *Nature* **374** (1995) 434.