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Abstract

In the striped Hall state, a magnetic translation in one direction is spontaneously broken to the discrete translation.
The spectrum of the neutral collective excitation is obtained in the single mode approximation at half-filled third
and fourth Landau levels. The spectrum is anisotropic and has a multiple line node structure. In one direction, the
spectrum resembles the liquid Helium spectrum with the phonon and roton minimum.
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Recently, highly anisotropic states were observed
around the half-filled third and higher Landau lev-
els[1,2]. The anisotropic state is believed to be the
striped Hall state which is a unidirectional charge den-
sity wave in a mean field theory[3,4]. The anisotropy
is naturally explained by the anisotropic Fermi surface
in the magnetic Brillouin zone[5]. It is predicted that
the fluctuation effect turns the striped state into the
smectic or nematic liquid crystal[6].

In this paper, we investigate the property of the neu-
tral collective excitations in the striped Hall state. In
the absence of edges and disorder, a two-dimensional
electron system under a uniform magnetic field has the
magnetic translation and rotation symmetry. In the
striped Hall state, a magnetic translation in one di-
rection is spontaneously broken to the discrete trans-
lation and the rotation is also spontaneously broken
to the m-rotation. Goldstone theorem for the striped
Hall state[7] says that the gapless excitation exists in
the neutral charge sector and couples with the den-
sity operator. The spectrum of the neutral collective
excitation is obtained in the single mode approxima-
tion numerically. We use the unit A = c=1and a =
\/2rhj/eB =1.

In a strong magnetic field B, the free kinetic energy
is quenched. Therefore we study only the interaction
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Hamiltonian projected into the 1 th Landau level, that
is

=3 / drde' W1 (1)W1 (¢ )V (r — ) W)W (r),

2
(r) = / gT’;wapxru,m, 1)

where W is the electron field operator projected into
the 1 th Landau level[5], BZ stands for Brillouin zone
lpi| < 7, and V(r) = ¢*/r (¢* = €*/4ne, € is the
dielectric constant). b;(p) is an annihilation operotor
for one-particle state (r|l, p) which is a Bloch wave on
the magnetic von Neumann lattice[5].

The mean field state for the striped Hall state is
constructed as

istripe) = ] &/ ()I0), (2)

peF.S.

where F.S. means Fermi sea |p,| < 7/2, and |0) is the
state in which the [ — 1 th and lower Landau levels are
fully occupied. The charge density for state of Eq. (2) is
uniform in y direction and periodic in x direction. The
period 7, is a parameter of the von Neumann lattice
and is fixed by the minimum energy condition[5].

We calculate the spectrum for a neutral collective ex-
citation at the half-filled third and fourth Landau level
using the single mode approximation. The single mode
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approximation is successful in the FQHS because the
backflow problem is absent for the electron states pro-
jected to the Landau level[8]. Projected density oper-

ator p(k) is written as e_k2/8”Lz(k2/47r)p* (k), where

P*(k)z/(gﬂl;gb;(p)bz(p—f()e_ﬁf%(%y—fcy)7 (3)

BZ

where k = (rskz, ky /7). It is well-known that the den-
sity operators projected to the Landau level are non-
commutative,

x k'

N
[p-(K), p(K)] = —2isin ( > ek +K). ()
The variational excited state is defined by |k) =
p«(k)|stripe) and the variational excitation energy
A(k) is written as
(k|(H, — Eo)|k) _ f(k)

A= T sl
]

f(k) = (0l[p«(=k), [H1, p«(K)]]|0) /2NC, (5)
s(k) = (0lp«(—k)p-(k)[0) /N,

where Ep is a ground state energy, N; is a electron
number in the 1 th Landau level, and s(k) is the so-
called static structure factor. To derive these expres-
sions, we use the relation f(—k) = f(k) and s(—k) =
s(k) due to 7 rotation symmetry. Using the commuta-
tion relation (4), f(k) is written as

F(k) :2/ L’f;w(k/)snﬁ (k/ x k> (6)

(2m)
x{s(k + k') — s(k)},

where vi(k) = e~k /4am (Li(k?/47))?*27q? /k. Therefore
the variational excitation energy is calculable if we
know the static structure factor s(k). For the mean
field state (2), s(k) behaves as |ky|/7rs at small k, and
periodic in k, direction with a period 27rs. The numer-
ical results for the energy spectrum A for v =14 1/2,
! =2 and 3 are shown in Figs. 1 and 2, respectively.

As seen in these figures, the spectrum in k, direction
resembles the liquid Helium spectrum with the phonon
and roton minimum. The spectrum has a multiple line
node at ky = 27rsn (n is integer). The comparison to
particle-hole excitation energy[7] shows that the single
mode approximation is good around k, = 27rsn. We
hope these spectrum will be observed for the evidence
of the striped Hall state.
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Fig. 1. Energy spectrum A at 0 < r3ky < 47 for k; = 0 and 1
(linear dispersion at ky = 0), ¥ = 2+ 1/2 in the single mode
approximation. The unit of k is a~! and the unit of spectrum
is ¢°> /a. The same unit is used in Fig. 2.

0.8 1=3

IS4
)

Spect rum
©
N

0.2

2 4 6 8 10 12
ky/r_s

Fig. 2. Energy spectrum A at 0 < r3ky < 47 for k; = 0 and 1
(linear dispersion at ky, = 0), ¥ = 3 + 1/2 in the single mode
approximation. The unit of k is a~! and the unit of spectrum
is ¢°/a.
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