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Abstract

The symmetries of the superconducting order parameter in quasi-one-dimensional systems are investigated by
the renormalization group method in a model characterized by backward scattering g1 and forward scattering g2.
Various types of pairing can be realized for different sets of (g1, g2). In the case of g1 = g2 (Hubbard model), for
example, the transition temperature of p-like triplet becomes higher than that of d-like singlet.
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Recent experiments on quasi-one-dimensional (q1d)
superconductor (TMTSF)2PF6 are deeply fascinating.
The upper critical field Hc2 along the b-axis exceed-
ing the Clogston limit [1] and the unchanged Knight
shift through Tc [2] strongly suggest the triplet pair-
ing. Then, its superconducting mechanism is wrapped
in mystery, since spin singlet pairings are generally be-
lieved to realize in the vicinity of SDW phase from
the studies on heavy electron superconductivity [3,4]
or high-Tc cuprates[5].

In this paper, we investigate the pairing mechanism
and the order parameter symmetry in q1d systems. We
first construct a pairing interaction applying the renor-
malization group (RG) method and then solve the gap
equation to determine the superconducting gap. This
treatment makes it possible to take into account the
characteristics of q1d systems which cannot be cap-
tured by the so-called FLEX approximation.[6]

The interaction part of the Hamiltonian can be writ-
ten in the form

Hint =
1

L

∑
ki ,α,β

g1a
†
k1αb†k2βak3βbk4α
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+
1

L

∑
ki,α,β

g2a
†
k1αb†k2βbk3βbk4 ,α,

where a†
k,α, ak,α (b†k,α, bk,α) denotes the operators for

the electrons belonging to the branch containing the
Fermi point +kF (−kF ). Here, g1 denotes the interac-
tion with the momentum transfer near 2kF , g2 with
the momentum transfer near 0. Following the usual RG
method[7], let us write the four-point vertex Γ∗

i irre-
ducible with respect to the particle-particle channel in
the form: Γ∗

αβγδ(q) = g1Γ̃
∗
1(q)δαγδβδ − g2Γ̃

∗
2(q)δαδδβγ ,

where |q − 2kF | = |k1 − k3|. Up to the second-order
(namely, the first-order correction), they are calculated
as

Γ̃∗
1(q) = 1 +

1

πvF
(g1 − g2)[ln(q/k0) − iπ/2] (1)

Γ̃∗
2(q) = 1 − 1

2πvF
g2[ln(q/k0) − iπ/2] (2)

They obey the scaling relation Γ̃∗
i [(q/k′

0), g
′
1, g

′
2] =

zi(k
′
0/k0)Γ̃

∗
i [(q/k0), g1, g2]. Using the results of first-

order renormalization [7], the scaling equations can be
solved as

Γ̃∗
1(q) = [1 − (g1/πvF ) ln(q/k0)]

−1/2(q/k0)
α, (3)

Γ̃∗
2(q) = [1 − (g1/πvF ) ln(q/k0)]

1/4(q/k0)
α/2, (4)
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Fig. 1. Superconductive gap ∆(k) as a function of k (left pan-

els). k0
F = π/4 is the Fermi surface in the absence of t⊥. The

right panels show the Fermi surface, where the solid (dashed)

line indicates ∆(k) > 0 (< 0).

where α = (g1/2) − g2 < 0. The total irreducible part
can be separated into even (+) and odd (−) part as

Γ∗(q) = g1Γ̃
∗
1(q) ± g2Γ̃

∗
2(q). It is important to note

that the response function for the charge and the spin
density have the same exponent α. In the presence
of t⊥, in q1d sysyrm, the transition temperature of
CDW and SDW are easily suppressed by the inter-
chain hopping, while Tc of the present supercunduc-
tivity is not[8]. Therefore, with a moderate interchain
hopping t⊥, the superconductivity mediated by Γ∗(q)
is realized instead of CDW or SDW for α < 0.

The transition temperature Tc and the order param-
eter ∆(k) of the superconductivity are determined by
the following linearized gap equation

∆(k) = −
∑

k′ ,k′
⊥

Γ∗ (|k − k′| − 2kF )
∆(k′)
2ξk′,k′

⊥

× tanh
ξk′,k′

⊥
2kBTc

. (5)

For g1 − 2g2 < 0, the obtained order parameters
are roughly classified into three types. 1) triplet order
parameter with finite gap at k0

F = π/4 (p-like triplet);
2) singlet order parameter with node just at k0

F (d-like
singlet); 3) triplet order parameter with node just at k0

F

(f -like triplet). Each type is shown in Fig. 1. With the
present pairing interaction, the gap function depends
only on k, though the dispersion depends both on k
and k⊥, and the Fermi surface is slightly warped due
to the interchain hopping. Therefore, d- and f -like gap
function vanishes on line k = π/4, and they have four
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Fig. 2. Transition temperature Tc for different sets of g1/g2

(g2 = 3.0).

line nodes on the Fermi surface (see the right panels of
Fig. 1).

The calculated Tc’s are shown in Fig. 2. For g1=0,
the transition temperature of d-like singlet and that
of f -like triplet are almost degenerate. In the case of
g1 = g2, corresponding to the Hubbard model, Tc of p-
like triplet is higher than that of d-like singlet. In the
intermediate region, 0.5 < g1/g2 < 1.0, Tc of d-like
singlet and that of p-like triplet are comparable.

It is natural to expect that real q1d conductors lie
in the region g1 < g2 rather than g1 = g2 (Hubbard
model) due to long-range Coulomb interaction. Assum-
ing that the coupling constants are in the region 0.5 <
g1/g2 < 1.0 for (TMTSF)2PF6, we may conclude that
the d-like singlet and p-like triplet are competing in
this material.
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