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Abstract

We propose a criterion to determine the existence of zero-energy edge states for a class of particle-hole symmetric
systems. A loop is assigned for each system, and its topology and a symmetry play an essential role. Applications
to d-wave superconductors are demonstrated.
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Introduction When a quantum system is terminated
to a finite size, it may support a state localized at the
boundaries. The appearance of such states is a hall-
mark of a phase degree of freedom specific to quan-
tum mechanical systems, and has been investigated in
the context of, say, quantum Hall or Haldane spin sys-
tems. In addition to these gapped cases, edge states
in gapless systems have attracted a great deal of in-
terest recently. For example, zero-energy edge states
(ZES) at a (110) surface in d-wave superconductors
(SC) have been observed via a tunneling spectroscopy.
[1–3] Graphite ribbons are also known to support ZES,
which lead to several physical consequences such as
spin polarization near the boundaries. [4] In this arti-
cle, we present a criterion to tell whether a certain sys-
tem supports ZES. Our criterion is built on a symme-
try and topology. Applications to ZES in d-wave SC is
demonstrated. We also discuss an instability caused by
ZES for d-wave SC: the emergence of the time-reversal
symmetry breaking superconducting order parameters
near (110) surfaces. [5]

Criterion for ZES A class of systems that we are con-
cerned with is described by the following single-particle
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hamiltonian:

H =
∑
x,x′

c†xhx,x′cx′ , hx,x′ =

[
tx,x′ ∆x,x′

∆′
x,x′ −tx,x′

]
= h†

x′ ,x,

where tx,x′ ,∆x,x′ ,∆′
x,x′ ∈ C, and c†

x = (c†x↑, cx↓) de-
notes electron creation/annihilation operators at site
x. The system is defined on a 1D lattice, with its total
number of the lattice sites being Nx, and x = 1, · · · ,Nx.

Our criterion for ZES is stated as conditions for the
bulk properties of the system and the shapes of edges.
The bulk property of the system is easily captured by
adopting the periodic boundary condition. With the
periodic boundary condition, the above hamiltonian
can be transformed to

Hbulk =
∑

k

c†
k R(k) · σ ck,

where k ∈ (−π, π] = S1 is the crystal momentum,
and σX,Y,Z the Pauli matrices. All bulk properties
are encoded in the Fourier-transformed matrix ele-
ment R(k) ∈ R3, from which we can identify a loop
� : k ∈ S1 → R(k) ∈ R3 for each 1D Hamiltonian
Hbulk. A system with a certain type of edges is then
generated by truncating a bulk Hamiltonian Hbulk. We
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refer a prescription for creating edges as e. Generally,
e represents an impurity potential at an edge, coex-
istence of different order parameters near boundaries
in superconducting systems, etc. We write a system
characterized by � and e as Hedge[�, e]. Then, we ask if
Hedge[�, e] supports ZES localized at either end of the
sample for given � and e.

Our criterion to tell the existence of ZES is summa-
rized as follows[6]:
(A) The loop � is on a plane cutting the origin O of

the three-dimensional R-space. For loops that sat-
isfy this condition, we can find an operator Γ which
anticommutes with Hbulk[�]. We call this property
as chiral symmetry. Γ is equivalent to 1Nx ⊗σZ upto
an arbitrary SU(2) transformation, where 1Nx acts
on a site index, while σZ on a spin index.

(B) � can be continuously deformed to �c without
crossing O, where �c is a unit circle on the plane.
(� ∼ �c)

(C) e respects the chiral symmetry. That is,Hedge[�, e]
anticommutes with Γ.

If the conditions (A)-(C) are satisfied, there exists at
least a pair of ZES, one of which localized at the right
edge and the other at the left edge.

For 2D or higher-dimensional systems with edges, we
first Fourier transform along directions parallel to the
edge, to get a family of 1D Hamiltonians parametrized
by the wave number along the edge. Then, the present
results are applicable for each 1D Hamiltonian.

As an application of the present results, let us discuss
2D dx2−y2 -wave SC with surfaces. In Fig.(1a) and (1b),
a family of loops in R-space and the energy spectrum is
shown for dx2−y2 -wave SC with (a) (110) and (b)(100)
surfaces. For the (110) case, loops are an ellipsis on
the XZ-plane enclosing O except at ky′ = ±π, 0 (ky′

is the wave number along the edges). Thus,the above
criterion tells us there are ZES for the (110) case. On
the other hand, we do not expect ZES for the (100)
case since loops collapse into a line segment. We have
verified numerically this prediction in Fig. (1b).

Peierls-like instabilityand the chiral symmetry breaking
Since edge states with different ky′ are all degenerate at
E = 0, they are expected to cause a Peierls-like insta-
bility. In presence of interactions, parameters in a sin-
gle particle Hamiltonian t,∆,∆′ near the edges might
be effectively modified in order to lift the degeneracy,
and thereby lower the ground state energy. However,
since these ZES are stable to perturbations which re-
spect the chiral symmetry (Statement (C)), such mod-
ifications should be accompanied with the breaking of
the chiral symmetry near the boundaries. The emer-
gence of, say, is or idxy components near the boundary
can breaks the chiral symmetry to lift the degeneracy
of edge modes. On the other hand, a purely real order

Fig. 1. Loops in the R-space and the corresponding energy

spectrum for dx2−y2 SC with (a) (110) and (b) (100) surfaces.

Energy spectra with introduction of (c) s and (d) is order

parameter near a (110) surface. An edge mode localized at the

site 1, Nx is indicated by x = 1, Nx.

parameter cannot do it. Indeed, it has been revealed
via a quasi-classical study that coexistence of is- or
idxy-wave order parameter with dx2−y2 -wave near the
surface is possible for the (110) surface. [5]

This is explicitly demonstrated in Fig. (1c) and (1d).
With the introduction of is order parameter near a
(110) surface in dx2−y2 SC, the flat band formed by
edge states develops a finite dispersion. On the other
hand, introduction of s order parameter does not break
the chiral symmetry, and hence cannot lift the degen-
eracy.
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