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Abstract

We give a group theoretical classification of the triplet vortex lattice states of the two-dimensional Hubbard model
with a nearest neighbor ferromagnetic exchange interaction in a uniform magnetic field. We obtain 11 types of
tetragonal vortex lattice states for the magnetic flux φ = φ0/p2 (φ0 = ch/2e is the flux quantum, p is an integer)
through a unit cell of crystal lattice. We show the configurations of the order parameters corresponding to axial
phase, up spin phase, planar phase and bipolar phase. It is clarified what types of vortex lattice phase are possible
in triplet superconductors such as Sr2RuO4 with basal square lattice when the symmetry of magnetic translation
is considered.
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Recently much attention has been focused on a spin
triplet superconductivity of Sr2RuO4. Vortex lattice
states for Sr2RuO4 have been studied on Ginzburg-
Landau theory by Agterberg [1]. In our previous pa-
pers [2,3], we gave a classification of tetragonal vor-
tex lattice solutions of singlet superconductivity in a
two dimensional square lattice. Then it is interesting
to know what types of triplet vortex lattice states are
there in a two dimensional square lattice.

We consider the two dimensional Hubbard Hamilto-
nian with a nearest neighbor ferromagnetic exchange
interaction (J < 0) in a magnetic field with a vector
potential �(�)= (− 1

2
By, 1

2
Bx, 0):

H = −t
∑

(m,n)s

{eiKn a†
(m,n)sa(m+1,n)s

+ e−iKm a†
(m,n)sa(m,n+1)s + h.c.} − µ

∑
(m,n)s

a†
(m,n)sa(m,n)s

+ J
∑
(m,n)

∑
s1,s2 ,s3,s4

∑
λ

{(a†
(m,n)s1

σλ
s1,s2a(m,n)s2 )
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( a†
(m+1,n)s3

σλ
s3,s4a(m+1,n)s4 ) + (a†

(m,n)s1
σλ

s1,s2a(m,n)s2 )

( a†
(m,n+1)s3

σλ
s3,s4a(m,n+1)s4 )}, (1)

where µ is the chemical potential, (m,n) denotes a site
in a square lattice, K = π

2
φ
φ0

, φ = Ba2, a is a lattice

constant, φ0 = ch
2e

is the flux quantum. The symmetry
group of the Hamiltonian is given by [2]

G0 = (e + tC2x)�4��Φ, (2)

where t is the time reversal, � is the group of the
magnetic translation [2,3,5] consisting of the ele-
ments T (Ma�x + Na�y)(M,N =integer ) such that
T (Ma�x+Na�y)a†

(m,n)s = eiK(Mn−Nm) a†
(m+M,n+N)s,

�4 is the four-fold rotation group, � is the group of
the spin rotation (SU(2)), and Φ is the group of the
global gauge transformation.

Hereafter we restrict our consideration to the case
φ = φ0/p2 (p =integer) for an illustrative purpose.
Then we can define an invariance magnetic translation
group � for a tetragonal vortex lattice [2]. � is a sub-
group of�Φ consisting of elements L(Mpa�x+Npa�y)
such that
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Table 1

Invariance groups of triplet vortex lattices

Invariance group

axial phase Gz
(0) = (1 + tC2x)(e + u2xπ̃)C

(0)
4 A(ez)L

Gz
(2) = (1 + tC2x)(e + u2xπ̃)C

(2)
4 A(ez)L

Gz
(+1) = (1 + tC2x)(e + u2xπ̃)C

(+1)
4 A(ez)L

Gz
(−1) = (1 + tC2x)(e + u2xπ̃)C

(−1)
4 A(ez)L

up spin phase Gz̃
(0) = (1 + tC2xu2x)C

(0)
4 Ã(ez)L

Gz̃
(2) = (1 + tC2xu2x)C

(2)
4 Ã(ez)L

Gz̃
(+1) = (1 + tC2xu2x)C

(+1)
4 Ã(ez)L

Gz̃
(−1) = (1 + tC2xu2x)C

(−1)
4 Ã(ez)L

planar phase GII = (1 + tC2xu2x)(e + π̃u2z)IIC4L

bipolar phase G+
sII

= (1 + tC2x)(e + π̃u2z)IIC̃
+
4 L

G−
sII

= (1 + tC2x)(e + π̃u2z)IIC̃
−
4 L

C
(0)
4 = {e, C+

4z, C2z, C−
4z}, C

(2)
4 = {e, π̃C+

4z, C2z, π̃C−
4z},

C
(+1)
4 = {e, (̃π/2)C+

4z, π̃C2z, ˜(−π/2)C−
4z},

C
(−1)
4 = {e, ˜(−π/2)C+

4z, π̃C2z, (̃π/2)C−
4z},

A(ez) = {u(ez , θ)|0 ≤ θ ≤ 2π}, Ã(ez) = {u(ez, θ)θ̃|0 ≤ θ ≤ 2π},
IIC4 = {e, C+

4zu(ez, π/2), C2zu(ez, π), C−
4zu(ez,−π/2)},

IIC̃
±
4 = {e, (̃π/2)

±
C+

4zu2a, π̃C2z, (̃π/2)
∓

C−
4zu2a}

L( M pa�x + Npa�y) · a†
(m,n)s

≡ ei π
2 (MN+M+N)T (Mpa�x + Npa�y) · a†

(m,n)s
(3)

Using a similar method with our previous paper [2,4],
we obtain 11 types of triplet tetragonal vortex lattice
states. Their invariance groups are listed in Table 1.
Local bond order parameters(LBOD) are defined by
〈a(m,n)sa(m+1,n)s′ 〉 and 〈a(m,n)sa(m,n+1)s′ 〉. Those are
shown in Fig. 1. Both axial and up spin phases, showing
the same vortex lattice pattern depicted in (a), have

4 types of symmetries corresponding to �
(+1)
4 (l = 1),

�
(−1)
4 (l = −1),�

(0)
4 (l = 0) and �

(2)
4 (l = 2). Those are

essentially one complex component order parameters
and we show their phase parts only. For one planar
phase and two bipolar phases(”+” and ”−”), each has
two components(”up” and ”down”) and those phase
patterns are depicted in (b) and (c).

In order to investigate their topological properties,
we have to introduce triplet local symmetric order pa-
rameters at each site (m,n). These are similar to those
defined in the previous paper [3], so we omit their def-
initions. Each LBOP are decomposed to S, D, P wave
components and each shows the definite winding num-
bers. These results are to be published elsewhere.
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(a) l=1 l=-1

l=0 l=2

(b) up down

(c) +up +down

-up -down

Fig. 1. Symmetries of the LBOPs for (a) axial(up

spin) phase Gz
(l)(G

z̃
(l))(l = 0,±1, 2); 〈a(m,n)↓a(m+1,n)↑〉,

〈a(m,n)↓a(m,n+1)↑〉 (〈a(m,n)↑a(m+1,n)↑〉, 〈a(m,n)↑a(m,n+1)↑〉),
(b) planar phase GII ; 〈a(m,n)sa(m+1,n)s〉, 〈a(m,n)sa(m,n+1)s〉
(s =↑(left), ↓(right)), (c) bipolar phase G+

sII(upper),

G−
sII

(lower); 〈a(m,n)sa(m+1,n)s〉, 〈a(m,n)sa(m,n+1)s〉 (s =↑
(left), ↓(right)). p = 3. 3×3 vortex lattice patterns are shown.
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