

Superconducting condensation energy in the pseudogap region of $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$

Toshiaki MATSUZAKI ^{a,b}, Masayuki IDO ^{a,1}, Naoki MOMONO ^a Migaku ODA ^a

^a*Department of Physics, Hokkaido University, Sapporo 060-0810, Japan*

^b*Kushiro National College of Technology, Kushiro 084-0916, Japan*

Abstract

The superconducting condensation energy at $T=0$, U_0 , was examined from the measurements of the electronic specific heat C_{el} on $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$. We reconfirmed that U_0 is markedly reduced in the pseudogap regime ($x \lesssim 0.2$). The doping-level (p) dependence of U_0 as well as T_c can be explained in the pseudogap regime by introducing an effective energy gap $\Delta_{eff} = \beta p \Delta_0$ ($\beta = 4.5$) instead of the maximum gap Δ_0 at $T \ll T_c$.

Key words: condensation energy; pseudogap; $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$; specific heat

1. Introduction

The superconducting (SC) condensation energy at $T=0$, U_0 , is exceedingly reduced even in slightly underdoped samples though their T_c 's are still high enough. This issue has been discussed in terms of a pseudogap, the evolution of an inter-plane phase coherence or the appearance of magnetic resonance in neutron scattering below T_c . [1,?,?] Another puzzling issue is an eccentric relationship between T_c and the maximum gap Δ_0 at $T \ll T_c$ in the underdoped region; that is, Δ_0 continues to increase with the decrease of doping-level (p) whereas T_c decreases there. [4,?] Recently it has been pointed out for $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}$ (Bi2212) and $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$ (La214) that T_c roughly scales with $\kappa p \Delta_0$ ($\kappa \sim 1.7$) instead of Δ_0 , as was first predicted by Lee and Wen theoretically, over a wide p -range including a slightly overdoped region. [6,?] The relation $T_c \sim \kappa p \Delta_0$, which is in sharp contrast to the BCS result, implies that the effective SC gap will be not Δ_0 but $\beta p \Delta_0$ ($\beta = const.$) there.

In the present study, we evaluated U_0 from the electronic specific heat C_{el} measured on La214, and recon-

firmed that U_0 is markedly reduced in the pseudogap regime ($x \lesssim 0.2$). It is demonstrated here that the p dependence of U_0 can be well reproduced by introducing the effective SC gap $\Delta_{eff} = \beta p \Delta_0$ ($\beta = 4.5$) instead of Δ_0 in the pseudogap regime.

2. Experimental

The electronic specific heat C_{el} was obtained by subtracting the phonon term C_{ph} , which was obtained on Ni-substituted non-superconducting samples, from the observed specific heat of superconducting ceramic samples. The partial substitution of Ni for Cu, which has little effect on the phonon system, enables us to determine the precise C_{ph} . [8]

3. Results and Discussion

We evaluated the SC condensation energy U_0 by integrating the entropy difference $S_n - S_s$ between $T = 0$ and T_c ,

$$U_0 = \int_0^{T_c} (S_n - S_s) dT, \quad (1)$$

¹ Corresponding author. fax: +81-117064926
E-mail: mido@sci.hokudai.ac.jp

where the subscripts s and n represent the SC and the normal state, respectively. Given both $\gamma_s = (C_{el}/T)_s$ and $\gamma_n = (C_{el}/T)_n$, we can obtain the entropy S_s and S_n by executing the integration $S_{s,n}(T) = \int_0^T (C_{el}/T)_{s,n} dT = \int_0^T \gamma_{s,n} dT$. In the present study, to obtain $\gamma_n(T < T_c)$ we extrapolated the data of $\gamma_n(T > T_c)$ down to below T_c using a declining straight line (Fig. 1). The extrapolation was made on condition

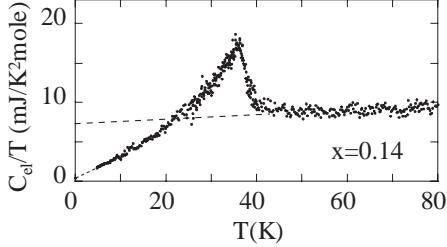


Fig. 1. T dependence of $\gamma = C_{el}/T$ of superconducting La214 ($x=0.14$). The broken line represents $\gamma_n(T < T_c)$ obtained by extrapolating $\gamma(T > T_c)$ down to below T_c .

that the extrapolated γ_n should satisfy the constraint on the second order phase transition $S_n(T_c) = S_s(T_c)$, i.e., the so-called “entropy balance”. The SC condensation energy U_0 was calculated using γ_s and $\gamma_n(T < T_c)$ thus obtained, and is plotted against $x (= p)$ in Fig. 2. The present results are consistent with those reported

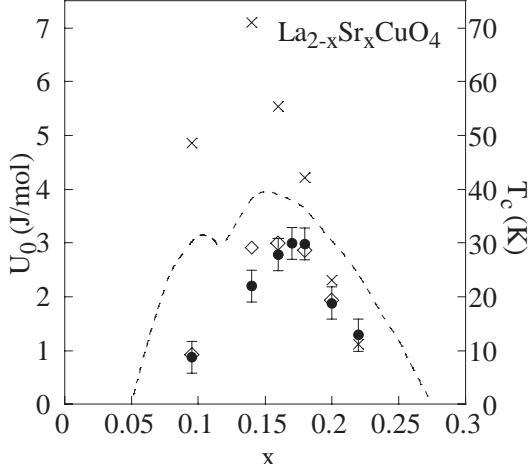


Fig. 2. SC condensation energy U_0 for La214. Experimental Data(\bullet) are shown, together with both calculated values given by eq. (2) for $\Delta_0(\times)$ and $\Delta_{eff}(\beta p\Delta_0)(\diamond)$ with $\beta = 4.5$.

by Loram *et al.* for $x \lesssim 0.2$, but larger by about 40 % for $x < 0.2$. [1]

The SC condensation energy U_0 (eV) for a flat DOS can be given by

$$U_0 \sim 2.1 \times 10^{-5} \alpha \gamma_n(T=0) \Delta_0^2 \quad (2)$$

for d -wave BCS superconductors ($\alpha \sim 0.4$). [9] The condensation energy given by eq. (2) for $\gamma_n(T =$

0)(J/K²mole) estimated above and Δ_0 (eV) determined in tunneling experiments on La214 [5] is shown in Fig. 2. The calculated values of U_0 are 2 ~ 4 times larger than experimental values for $x < 0.2$. The serious disagreement between experimental and calculated values of U_0 at $x < 0.2$ seems to originate in the modification of the SC gap caused by the formation of the pseudogap. In fact, it has been pointed out that in the pseudogap regions of Bi2212 and La214, the effective SC gap Δ_{eff} will be not Δ_0 but $\beta p\Delta_0(\beta = const.)$ because T_c scales with $p\Delta_0$ instead of Δ_0 , as mentioned above. Then we calculate U_0 again by substituting $\Delta_{eff} = \beta p\Delta_0$ for Δ_0 in eq. (2) and treating β as fitting parameter. In Fig. 2, the calculated value of U_0 for $\beta = 4.5$ is plotted against $x (= p)$. The new results can reproduce the experimental values very well over the whole p -range examined, as expected.

In summary- we evaluated the SC condensation energy U_0 from C_{el} , and reconfirmed that the U_0 is markedly suppressed in the pseudogap regime ($x \lesssim 0.2$) as well as $N(0)$. [10] The reduction of U_0 is too large to be explained by taking into account the reduction of $N(0)$, i.e., γ_n only. To explain the experimental values of U_0 in the pseudogap regime, we have to introduce a new SC energy scale $\beta p\Delta_0(\beta = 4.5)$, which plays a role as the effective SC gap, Δ_{eff} , instead of Δ_0 . The new SC energy scale has been discussed in terms of the shrinkage of the Fermi surface to the nodal arcs near $(\pi/2, \pi/2)$, which is caused by the formation of a pseudogap or spinon pairing in the normal state. [6,?]

Acknowledgements

This work was supported in part by Grant-in-Aids for Scientific Research on Priority Area from the Ministry of Education, Culture, Science, Sport and Technology of Japan.

References

- [1] J. W. Loram *et al.*: J. Supercon. **7** (1994) 243.
- [2] P. W. Anderson: Science **279** (1998) 1196.
- [3] E. Demler and S-C Zhang: Nature **396** (1998) 733.
- [4] J. M. Harris: Phys. Rev. B **54** (1996) 15665.
- [5] T. Nakano *et al.*: J. Phys. Soc. Jpn. **67** (1998) 2622.
- [6] P. A. Lee and X. G. Wen: Phys. Rev. Lett. **78** (1997) 4111.
- [7] M. Oda *et al.*: J. Phys. Soc. Jpn. **69** (2000) 983.
- [8] T. Nagata *et al.*: Physica C **246-365** (2001) 430.
- [9] Y. Sun and K. Maki: Phys. Rev. B **51** (1995) 6059.
- [10] A. Ino *et al.*: Phys. Rev. Lett. **81** (1998) 2124.
- [11] M. R. Norman *et al.*: Nature **392** (1998) 157.