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Abstract

Transport data in the vortex liquid regime of underdoped cuprates and organic materials show evidences of strong
quantm superconducting fluctuation such as a field-tuned superconductor-insulator transition (FSIT) behavior.
Two typical examples of strong quantum fluctuation effects, the FSIT behaviors in dirty films of s-wave pairing
materials and the field-induced quantum fluctuation effects in k-(ET) organic superconductors, are discussed
through comparison between resistivity data and theoretical curves.
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1. Introduction

It is well understood that the fan-shaped broaden-
ing of resistance curves in (typically) optimally-doped
high T, cuprates under nonzero fields (H > 0) is due to
the thermal superconducting fluctuation [1]. However,
the resistivity vanishing in other cuprates with lower
Teo in H > 0 is relatively sharp. This trend in under-
doped cuprates means not a weaker but a stronger
fluctuation effect: The field-tuned superconductor-
insulator transition (FSIT) behavior, observed in
strongly underdoped samples [2], cannot occur with-
out a strong quantum superconducting fluctuation
[3]. Further, resistivity curves vanishing rapidly much
below (appropriately-defined) Heo(T') or Tea(H) (and
thus, suggesting a strong fluctuation) are seen even
in overdoped [4], electron-doped [5] cuprates, and
organics [6,7] under large h = H/H:2(0) values.

To understand the sharp resistive vanishing much
below Tco and the FSIT behaviors consistently, it is
valuable to, separately from cuprates, first examine
such phenomena in conventional materials by combin-
ing our theory for the quantum regime [3,8] with ap-
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propriate microscopic models for those systems. Here,
computed results of resistivity are reported and com-
pared with available experimental data of dirty thin
films with s-wave pairing [9-11] and quasi 2D organic
superconductors [6,7]. Data of underdoped cuprates [2]
will be discussed elsewhere[12].

2. FSIT behaviors in s-wave dirty films

A high field Ginzburg-Landau (GL) theory incorpo-
rating microscopic details of s-wave dirty amorphous
thin films with thickness d was given in Ref.[3]. In quasi
2D case where krd > 1, the microscopic disorder is
measured solely by the reduced sheet resistance R, /R,
(o< d™ 1), where Ry = 6.45 (k Q) is the quantum re-
sistance, and thus, both strengths of the (quantum)
fluctuation and the vortex pinning are enhanced with
increasing R, /Rq. Results of computed resistance R
are shown in Figs.1 and 2, where the conductance R *
includes its vortex-glass fluctuation contribution Ru_ql
creating the FSIT behavior and a sum of fluctuation
contributions excluded from the GL description which
should be [3] the origin of the negative magnetoresis-
tance correction peculiar[12] to the s-wave pairing case
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Fig. 1. Low T resistance (R/R, v.s. T/Tco) curves computed
according to the theory of Ref.[3] assuming an s-wave dirty
film with R, = 0.3R;. The magnetic field is varied from
h = H/H.2(0) = 0.9 (top curve) to 0.8 (botom one), and
R. = 0.99R,, and H, = 0.865H 2(0) are obtained.
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Fig. 2. Corresponding results in R, = 0.6R,; to Fig.1. The
varied h-range is from 0.7 to 0.98, and R. = 0.77R, and
H. = 0.8H.2(0) are obtained.

(see the higher h curves in Fig.2).

We find through computed curves that, in an in-
termediate T range, the R(= G~ ')-curve at an ap-
parent critical field H., where R(T — 0) takes a
T-independent value R, is insulating if R,/Rq < 0.5
and is superconducting otherwise. The former and
latter behaviors were found in Ref.[9] and Ref.[10],
respectively. Further, we find that R. ~ R, when
R./R, < 0.5, while R./R,, decreases with increasing
R, (> 0.5R4). The former is familiar through data
of low R, materials [13], while the latter seems to be
consistent with a recent report [11].

3. Quantum Fluctuation and H.»

Fitting to data of organic materials was performed
(Fig.3) by assuming the clean limit at the electronic
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Fig. 3. Fitting results to resistance data [6] in H(T) = 1,
2, 4, 6, and 8 of k-(ET)2Cu[N(CN)2]Br. Theoretical (solid)
curves are obtained assuming T.o = 12 (K), H¢2(0) = 20 (T),
and A(0) = 8800 (A). We note that T¢2(2(T)) = 11 (K) and
T.2(8(T)) = 8 (K).

level and adding Ru_q1 to the conductance. The fan-
shaped broadening below 2 (T) is due primarily to the
thermal fluctuation, while the higher field behavior
following the normal resistance (dashed curve) until
rapidly dropping much below 7> is a consequence
of the quantum fluctuation enhanced by increasing
H. Namely, the resistively-determined ” Heo(T)” in
this case is generally lower than the thermodynamic
Hco(T). Further, the fact that the above-mentioned
high field resistive behavior is visible in materials
besides cuprates implies that, contrary to the argu-
ment in Ref.[4], it has nothing to do with microscopic
ingredients peculiar to the cuprates such as antiferro-
magnetic vortex core states.
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