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Abstract

The extended quasi-particle states in the mixed state of d-wave superconductors are investigated on the basis of the
BdG equation. It is shown that the quasi-particle eigen states can be classified in terms of new topological quantum
numbers in the presence of vortices. A new approximate scheme for solving the BdG equation is developed in the
region Hc1 � H � Hc2.
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To establish the correct description for the extended
quasi-particles in the mixed state of d-wave supercon-
ductors is one of the current subjects in high-Tc super-
conductors. In this paper we give a new insight into the
quasi-particle eigen states in the presence of vortices
and present solutions of the BdG equation in the field
region Hc1 � H � Hc2 in d-wave superconductors.

Consider the BdG equation for a dxy-wave supercon-
ductors in the following form,[
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In Eq.(1) the gap parameter is expressed as ∆(r) =
|∆(r)|eiφ(r), φ(r) being the phase. For the extended
quasi-particle states we can utilize the approxima-
tion |∆(r)| � ∆0 in the region Hc1 � H � Hc2.
In the N -vortex state φ(r) is a multi-valued func-
tion having the topological singularity, ∇ × ∇φ(r) =

2π
∑N

i
δ(r-Ri)ez, where Ri is the position of ith

vortex. Anderson proposed a transformation for the
wave-functions as uα → uα, vα → vαe−iφ, or uα →
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uαeiφ, vα → vα, to express the BdG equation in
terms of only single-valued functions, eliminating the
phase factor in Eq.(1)[3]. As pointed out by Franz
and Tešanović, the phase factor can be eliminated

generally by the transformation, uα → eiφe uα, vα →
e−iφhvα, if φe + φh = φ [4]. The phase factor in Eq.(1)
can really be eliminated by these transformations, but
the essentials lying behind them are in the topological
nature of the quasi-particle wave-functions, that is,
the quasi-particle wave-function in the mixed state is
a one in a multi-connected system. Therefore, uα(r)
and vα(r) are path-dependent single-valued functions
in the mixed state. On the basis of these observations
we can prove that the wave-functions are expressed as

{
uα(r) = ũnµ(r)ei(

1
2−µ)φ(r;R1 ,···,RN)

vα(r) = ṽnµ(r)e−i( 1
2 +µ)φ(r;R1,···,RN)

, (2)

when the phase factor is explicitly extracted. In Eq.(2)
µ is a half and integer, namely, µ = ± 1

2
,± 3

2
, · · ·, which

may be interpreted as a quantum number specifying the
quasi-particle eigen-states in the N -vortex state, and
n denotes symbolically the other quantum numbers.
The proof will be given in a separate paper. Then.
substituting Eq.(2) into Eq.(1), we obtain the equation
in terms of only single-valued functions as
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ṽnµ

]
, (3)
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and the off-diagonal component, Π(∇;µ), is given as
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Let us now solve Eq.(3) in the region Hc1 � H �
Hc2. In this field region the spatial variation of the
magnetic field B(r) can be neglected in the 0th order
approximation. Then, the vector potential in Eq.(3)
is approximated as A(r) � A0(r) = (0, Bx, 0) with
B = 〈Bz(r)〉av. Furthermore, in this approximation
we can assume vs � 0, noting the relation, ∇ × B =
4πe∗

c
ρs(r)vs(r) � 0, where ρs(r) is the local super-

fluid density and is finite outside the vortex cores.
Then, we can utilize the approximate relation,∇φ(r) �
2e
h̄c

A0(r). Note that the topological singularity in this
approximation is reduced to (∇ × ∇φ)z = (∂x∂y −
∂y∂x)φ = 2πm, with m being an integer. This result is
equivalent to that in the “continuity approximation”,
i.e., (∇ × ∇φ)z � 2π〈∑N

i
δ(r-Ri)〉av = 2πm. Under

these approximations the BdG equation is expressed as[
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with pα = −ih̄∂α, which sat-

isfy the canonical commutation relation, [Q,P ] = ih̄.
Eq.(5) can be solved by means of the Landau level
expansion for uα and vα. As seen in Eq.(5), the eigen-
states can be specified by two quantum numbers,
n and µ. The quantum number n is related to the
Landau-level index, which is not a good quantum
number in the superconducting state since the off-
diagonal components in Eq.(5) induce the mixing of
the levels. On the other hand, µ may be understood
to be a topological one, which relates to the homotopy
class of the classical orbits of the quasi-particles.

Let us now present numerical results for the energy
eigen-values of Eq.(5). In Fig.1 we plot the field de-
pendence of the lowest excitation energy in the case of
εF = 200 meV, ∆0 = 2 meV and m = me (free elec-
tron mass). In this choice of the parameter values we
find h̄ωc = ∆0 for B ∼ 16T . Then, the crossover be-
havior of the excitation energy is expected to be seen in
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Fig. 1. The field dependence of the lowest excitation energy.

the field dependence given in Fig.1. First we note that
the lowest energy eigen-state has zero-energy in the
weak field region, but it abruptly changes to a gapped
state above some value of B, which indicates that the
quasi-particle eigen-state acquire a full energy-gap in
the strong field region, though the symmetry of the
gap function is the same as in the Meissner state. In
the strong field region the quasi-particles traveling in
the nodal directions can change directions into those
with an energy-gap by the effect of the Lorentz force.
This is the origin of the gapped superconducting state
in the strong field region. Furthermore, we notice in
Fig.1 that the lowest excitation energy shows oscilla-
tory behavior in the field region of h̄ωc > ∆0. These
oscillations reflect the field dependence of the diagonal
components of Eq. (5), that is, they are the quantum
oscillations which leads to the de Haas van Alphen ef-
fect.

In summary our theory for the quasi-particles in d-
wave superconductors can describe the crossover be-
havior from the gappless phase in the weak field region
to the gapped phase showing the quantum oscillations
in the strong field region.
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