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Abstract

We present magnetoconductivity measurements of two-dimensional non-degenerate electrons on liquid helium at
1.22 K. We measured the magnetoconductivity from an extremely low density where e-e interactions are negligible
to densities where Coulomb interactions dominate the width of the density of states peaks. We observe a crossover
from Drude theory to SCBA as a function of both magnetic field and electron density at finite classical fields.
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Electrons on helium form one of the simplest and
cleanest two-dimensional (2D) electron systems. Aside
from the non-degeneracy, it differs from other 2D elec-
tron systems in the strength of the electron-electron (e-
e) interaction[1,2]. It is an ideal system for the study of
properties of interacting electrons since the Coulomb
interaction is weakly screened by metallic plates that
are separated from the electrons by about 1 mm. In this
system, electron-helium atom scattering dominates at
temperatures above 0.8 K, while electron-ripplon scat-
tering is important at lower temperatures.

An interesting property of this non-degenerate 2D
electron gas is the density of states[3] (DOS) in a mag-
netic field. The DOS peaks at the Landau levels (LLs)
have a width ∆ that depends both on the scattering
rate[3] and the e-e interaction[1].

In zero magnetic field the density of states is con-
stant: D0(E) = m/πh̄2. The magnetoconductivity of
electrons, σxx(B), is given in the Drude model for
µ0B � 1. Landau levels separate when h̄ωc/∆ ∼ 1.
The LL width ∆ which includes the contributions ∆a

due to collisions with helium atoms and ∆e due to e-e
interactions is given by
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∆2 = ∆2
a + ∆2

e. (1)

As LLs separate, the Drude model loses its valid-
ity and a crossover to the SCBA regime occurs. In
SCBA, the DOS and thus the magnetoconductivity is
obtained self consistently in the Born approximation.
The broadening ∆a has been calculated[3] in the SCBA
limit for a semi-elliptic DOS and short range scatterers
and given by

∆a =
h̄

τB
= h̄(

8

π

ωc

τ0
)1/2, (2)

where ωc = eB/m is the cyclotron frequency and τ−1
B

is the scattering rate in a magnetic field. For ∆e → 0
and h̄ωc < ∆a, we assume that the broadening ∆a is
determined by the zero field scattering time and is on
the order of ∼ h̄/τ0.

The crossover is delayed by many electron effects[1,4]
as seen in Eq. 1. The broadening ∆e is given by the-
ory[4] as

∆e = eEfλT ; Ef ≈ (
11kTn3/2

4πεε0
)1/2, (3)

where ε = (εHe + 1)/2 = 1.028, Ef is the fluctuating
field[1] an electron feels due to redistribution of other
electrons as it moves, and the thermal wavelength λT

is the characteristic size of an electron in the classical
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limit h̄ωc < kT . For our experimental data h̄ωc <
0.12kT . The theory predicts that the broadening ∆e

is on the order of the broadening ∆a for the zero field
mobility µ0 = 25 m2/Vs and the density n ∼ 1011 m−2.

We present our magnetoconductivity data which ex-
tend to electron densities that are two orders of magni-
tude smaller than previously reported. We span both
the independent-electron regime where the data are
qualitatively described by the SCBA, and the strongly-
interacting electron regime. At finite fields we observe
a crossover from SCBA to Drude theory as a function
of electron density.

In Fig 1., we show the normalized inverse magne-
toconductivity σxx(0)/σxx(B) as a function of B2 for
six electron densities. We observe a crossover from the
Drude magnetoconductivity (B2 dependence) to the
SCBA magnetoconductivity (B3/2 dependence) as the
electron density is reduced for h̄ωc/∆ > 1. The dashed
line is the Drude theory.

In order to obtain a quantitative result for
the crossover field, we fit our normalized inverse-
magnetoconductivity with a function 1+F (µ0, B,Bc)
with

F (µ0, B,Bc) = [1 − C](µ0B)2 + C
3π3/2

8
√

2
(µ0B)3/2. (4)

Here µ0 and Bc are the free parameters, and C =
C(B,Bc) is a crossover function. We find an excellent
fit to the low-density data by choosing C(B,Bc) =
tanh1/2( B

4Bc
). This function is 0.5 at B = Bc. The

function F starts in the Drude regime at B = 0 and
goes into SCBA at a magnetic field characterized by
the crossover field Bc. The SCBA theory obtained from
Eq. 4 for B � Bc is valid[5] in classical fields. In our
fits shown by solid lines in Fig. 1, we allow µ0 and Bc

to be free parameters. The values of Bc obtained from
the fits give an approximate width ∆� of the LLs for
each electron density. We obtain the values of ∆� by
setting ∆� = h̄eBc/m and plot them in Fig. 2. In the
figure we plot, for comparison, the theoretical expres-
sion for the width ∆ given in Eq. 1 as a solid line for
∆a = 15 mK and ∆e = 11eEf λT . We find that the
values of ∆� give the correct functional dependence on
the electron density, but differ from theory in the value
of ∆e by a factor of 11.

In conclusion, we measured the magnetoconductiv-
ity of non-degenerate electrons in the very low-density
limit. The data show the effect of e-e interactions
clearly. Electron-electron interactions have a signif-
icant effect on the magnetoconductivity causing a
delay in the transition from Drude to SCBA regime as
a function of a magnetic field. When the many elec-
tron effects are negligible, the transition is observed
in classical fields. We also studied the effect of e-e
interactions on the LL width. Our results agree with
theory qualitatively but differ by a numerical factor.
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Fig. 1. Normalized inverse-magnetoconductivity vs. B2. The

values of the fitting parameters Bc and µ0 for the fits to Eq.

4 are given in the inset.
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Fig. 2. The values of ∆� as a function of electron density. The

solid line is described in the text.
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