

Density of states in a magnetic field and electron-electron interactions

I. Karakurt ^{a,1}, A.J. Dahm ^a,

^a*Department of Physics, Case Western Reserve University, Cleveland, OH 44106-7079*

Abstract

We present magnetoconductivity measurements of two-dimensional non-degenerate electrons on liquid helium at 1.22 K. We measured the magnetoconductivity from an extremely low density where e-e interactions are negligible to densities where Coulomb interactions dominate the width of the density of states peaks. We observe a crossover from Drude theory to SCBA as a function of both magnetic field and electron density at finite classical fields.

Key words: density of states; electron-electron interactions; magnetoconductivity

Electrons on helium form one of the simplest and cleanest two-dimensional (2D) electron systems. Aside from the non-degeneracy, it differs from other 2D electron systems in the strength of the electron-electron (e-e) interaction[1,2]. It is an ideal system for the study of properties of interacting electrons since the Coulomb interaction is weakly screened by metallic plates that are separated from the electrons by about 1 mm. In this system, electron-helium atom scattering dominates at temperatures above 0.8 K, while electron-riplpon scattering is important at lower temperatures.

An interesting property of this non-degenerate 2D electron gas is the density of states[3] (DOS) in a magnetic field. The DOS peaks at the Landau levels (LLs) have a width Δ that depends both on the scattering rate[3] and the e-e interaction[1].

In zero magnetic field the density of states is constant: $D_0(E) = m/\pi\hbar^2$. The magnetoconductivity of electrons, $\sigma_{xx}(B)$, is given in the Drude model for $\mu_0 B \ll 1$. Landau levels separate when $\hbar\omega_c/\Delta \sim 1$. The LL width Δ which includes the contributions Δ_a due to collisions with helium atoms and Δ_e due to e-e interactions is given by

¹ Corresponding author. Present address: Department of Physics, Case Western Reserve University, Cleveland, OH 44106-7079 E-mail: ixk13@cwru.edu

$$\Delta^2 = \Delta_a^2 + \Delta_e^2. \quad (1)$$

As LLs separate, the Drude model loses its validity and a crossover to the SCBA regime occurs. In SCBA, the DOS and thus the magnetoconductivity is obtained self consistently in the Born approximation. The broadening Δ_a has been calculated[3] in the SCBA limit for a semi-elliptic DOS and short range scatterers and given by

$$\Delta_a = \frac{\hbar}{\tau_B} = \hbar \left(\frac{8}{\pi} \frac{\omega_c}{\tau_0} \right)^{1/2}, \quad (2)$$

where $\omega_c = eB/m$ is the cyclotron frequency and τ_B^{-1} is the scattering rate in a magnetic field. For $\Delta_e \rightarrow 0$ and $\hbar\omega_c < \Delta_a$, we assume that the broadening Δ_a is determined by the zero field scattering time and is on the order of $\sim \hbar/\tau_0$.

The crossover is delayed by many electron effects[1,4] as seen in Eq. 1. The broadening Δ_e is given by theory[4] as

$$\Delta_e = eE_f \lambda_T; \quad E_f \approx \left(\frac{11kTn^{3/2}}{4\pi\bar{\epsilon}\epsilon_0} \right)^{1/2}, \quad (3)$$

where $\bar{\epsilon} = (\epsilon_{He} + 1)/2 = 1.028$, E_f is the fluctuating field[1] an electron feels due to redistribution of other electrons as it moves, and the thermal wavelength λ_T is the characteristic size of an electron in the classical

limit $\hbar\omega_c < kT$. For our experimental data $\hbar\omega_c < 0.12kT$. The theory predicts that the broadening Δ_e is on the order of the broadening Δ_a for the zero field mobility $\mu_0 = 25 \text{ m}^2/\text{Vs}$ and the density $n \sim 10^{11} \text{ m}^{-2}$.

We present our magnetoconductivity data which extend to electron densities that are two orders of magnitude smaller than previously reported. We span both the independent-electron regime where the data are qualitatively described by the SCBA, and the strongly-interacting electron regime. At finite fields we observe a crossover from SCBA to Drude theory as a function of electron density.

In Fig 1., we show the normalized inverse magnetoconductivity $\sigma_{xx}(0)/\sigma_{xx}(B)$ as a function of B^2 for six electron densities. We observe a crossover from the Drude magnetoconductivity (B^2 dependence) to the SCBA magnetoconductivity ($B^{3/2}$ dependence) as the electron density is reduced for $\hbar\omega_c/\Delta > 1$. The dashed line is the Drude theory.

In order to obtain a quantitative result for the crossover field, we fit our normalized inverse-magnetoconductivity with a function $1 + F(\mu_0, B, B_c)$ with

$$F(\mu_0, B, B_c) = [1 - C](\mu_0 B)^2 + C \frac{3\pi^{3/2}}{8\sqrt{2}} (\mu_0 B)^{3/2}. \quad (4)$$

Here μ_0 and B_c are the free parameters, and $C = C(B, B_c)$ is a crossover function. We find an excellent fit to the low-density data by choosing $C(B, B_c) = \tanh^{1/2}(\frac{B}{4B_c})$. This function is 0.5 at $B = B_c$. The function F starts in the Drude regime at $B = 0$ and goes into SCBA at a magnetic field characterized by the crossover field B_c . The SCBA theory obtained from Eq. 4 for $B \gg B_c$ is valid[5] in classical fields. In our fits shown by solid lines in Fig. 1, we allow μ_0 and B_c to be free parameters. The values of B_c obtained from the fits give an approximate width Δ^* of the LLs for each electron density. We obtain the values of Δ^* by setting $\Delta^* = \hbar e B_c / m$ and plot them in Fig. 2. In the figure we plot, for comparison, the theoretical expression for the width Δ given in Eq. 1 as a solid line for $\Delta_a = 15 \text{ mK}$ and $\Delta_e = 11eE_f\lambda_T$. We find that the values of Δ^* give the correct functional dependence on the electron density, but differ from theory in the value of Δ_e by a factor of 11.

In conclusion, we measured the magnetoconductivity of non-degenerate electrons in the very low-density limit. The data show the effect of e-e interactions clearly. Electron-electron interactions have a significant effect on the magnetoconductivity causing a delay in the transition from Drude to SCBA regime as a function of a magnetic field. When the many electron effects are negligible, the transition is observed in classical fields. We also studied the effect of e-e interactions on the LL width. Our results agree with theory qualitatively but differ by a numerical factor.

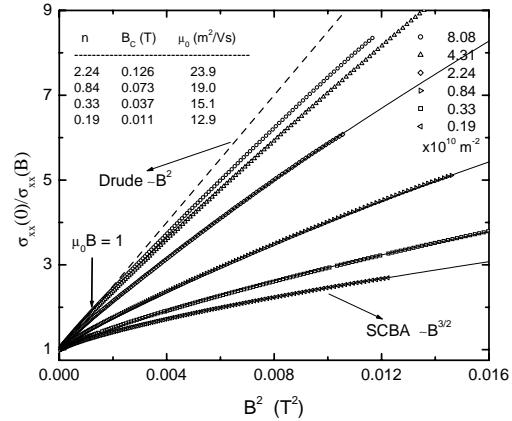


Fig. 1. Normalized inverse-magnetoconductivity vs. B^2 . The values of the fitting parameters B_c and μ_0 for the fits to Eq. 4 are given in the inset.

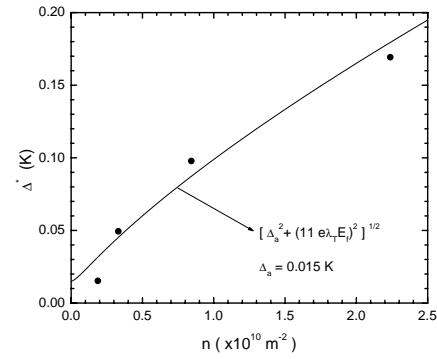


Fig. 2. The values of Δ^* as a function of electron density. The solid line is described in the text.

Acknowledgements

The authors wish to acknowledge M.I. Dykman and H. Mathur for helpful conversations. This work was supported in part by NSF grant DMR-0071622.

References

- [1] M.J. Lea, M.I. Dykman, *Philos. Mag. B* **69**, 1059 (1994).
- [2] M.J. Lea, P. Fozooni, P.J. Richardson, A. Blackburn, *Phys. Rev. Lett.* **73**, 1142 (1994).
- [3] T. Ando, *J. Phys. Soc. Jpn.* **37**, 1233 (1974).
- [4] M.J. Lea, P. Fozooni, A. Kristensen, P.J. Richardson, K. Djerfi, M.I. Dykman, C. Fang-Yen, A. Blackburn, *Phys. Rev. B* **55**, 16280 (1997).
- [5] R.W. van der Heijden, M.C.M. van de Sanden, J.H.G. Surewaard, A.T.A.M. de Waele, H.M. Gijsman, F.M. Peeters, *Europhys. Lett.* **6**, 75 (1988).