Edgemagnetoplasmons in a partially screened system
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Abstract

We present a study of partially screened edgemagnetoplasmon modes to test theoretical predictions. Fetter’s theory
fits the data for small magnetic fields. Deviations at larger fields occur when the penetration length becomes shorter
than the width of the density profile at the sample perimeter. At large fields the resonant mode frequencies are in
reasonable agreement with the theoretical predictions of Volkov and Mikhailov.
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Edgemagnetoplasmons (EMP) were discovered in-
dependently for electrons on a helium surface by Mast
et al.[1] for the partially screened case and for the fully
screened case by Glattli et al.[2] Further studies have
been made of partially screened EMP in the high mag-
netic field limit for the overdamped case [3] and for
resonant modes[4]. We present data for partial screen-
ing at small and intermediate magnetic fields in order
to test theories in these limits.

Both Fetter[5] and Volkov and Mikhailov[6] solved
for the EMP modes in a disk geometry of radius R with
a sharp density profile at the perimeter and electrons
screened by metal plates located a distance h above
and below the sample. Fetter reduced the problem to
an equivalent matrix problem. The mode frequencies
of azimuthal number L, w(q = L/R) with R as the
sample radius, are given by a solution to
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where w. is the cyclotron frequency, and
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Here ¢ is the dielectric constant of helium, and n is the
electron density. The kernal Kj;; is obtained from an
integration over Bessel functions and is a function of
the screening parameter, h/R, while the elements v;;
and g;; are simple expressions. All elements depend on
L, and the density enters only through €.

Volkov and Mikhailov solved a Wiener-Hopf inte-
gral equation for the amplitude of the EMP potential.
They obtain an explicit expression for w(L) in the lim-
its wr > 1 and w/w. < 1. This expression is

Lows (28wt L+, ®)

~ meo(e + 1)R[

where 0,y = ne/B, and VU is the digamma function.
The penetration depth A is the maximum of the density
profile width at the sample perimeter b or ¢, which is
given for (w? — w?)7? > 1 by
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They find the following expression for the linewidth,
Aw = o4y L/(e + 1)eg RwT™, (5)

where 7 is the elastic scattering time in the Drude
model in a large field.
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Fig. 1. Normalized plot of w vs w, for L=1-3, n = 7x 10" ecm ™!
and R = 5.4mm. Solid curve - Fetter’s theory; dashed curve -
theory of Volkov and Mikhailov.

Our sample cell contains electrons located midway
between two capacitor plates into which electrodes
are formed. The bottom plate consists of four concen-
tric electrodes. A holding voltage applied to chosen
electrodes confines the electron pool above these elec-
trodes. The magnitude of a repelling guard voltage
applied to electrodes outside of the electron pool al-
ters the pool radius and determines the density profile
at the perimeter. The upper plate includes a center
disk and two electrodes along the perimeter of angular
width of 12 and 80 degrees. An rf voltage applied to one
of these electrodes drives either radial or EMP modes.
These electrodes are connected to a transmission line
terminated in 50 2. We measure the resonant mode
frequencies with a swept rf reflection spectrometer.

We define the width of the edge profile b as the sep-
aration of radii at which the density is 10% and 90% of
that at the center. The density profile was calculated
numerically for various guard voltages.

Experimental data for different densities fit on a uni-
versal plot of normalized mode frequencies w/Qg versus
normalized cyclotron frequency w./€o consistent with
Eq. (1). A normalized plot of the data for the three
lowest modes is shown in Fig. 1. The result of Fetter’s
theory using a 29 x 29 matrix in Eq. (1) is given by the
solid lines. Volkov and Mikhailov’s theory is plotted as
dashed lines with A = b = 0.7mm.

We show the linewidth as a function of B in Fig. 2.
The solid curve shows the qualitative theoretical vari-
ation given by Eq. (5) calculated with experimental
values of w.

We have shown that a 29 x 29 matrix solution to
Fetter’s equation is sufficient up to w./Qo = 100. The
parameter £ is equal to b at w/w. = 4. We conjecture
that the deviation of the experimental data below Fet-
ter’s theoretical prediction at intermediate fields re-
sults because for A < b the EMP mode is confined to
the reduced density at the sample edges and hence a
reduced mode frequency. For the theory of Volkov and
Mikhailov, we used A = b although the definition of b
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Fig. 2. Linewidth vs B~! for L = 1-3, n = 1.76 x 10%¢m ™!, R
= 8.0 mm, and T = 400 mK. The solid line is a qualitative fit
to theory.

is somewhat arbitrary.

The linewidth is nearly independent of mode num-
ber, since the factor q/w is approximately independent
of gq. The linewidth decreases faster than the predicted
dependence on magnetic field at large fields.

In conclusion, the data are in reasonable agreement
with the two theories in the regimes where each is ap-
plicable. Attempts will be made to take the exact pro-
file into effect in the theory|[6].
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