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Abstract

We propose the spin-Peierls mechanism for the the non-trivial magnetization plateaux at Ms/4 and (3/4)Ms (Ms

is the saturation magnetization) of the two-leg S = 1 spin ladder, bearing in mind the recent experiment on the
BIP-TENO.
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A new organic tetraradical, 3,3’,5,5’-tetrakis(N-tert-
butylaminoxyl)biphenyl, abbreviated as BIP-TENO,
has been synthesized recently [1]. This material can
be regarded as an S = 1 antiferromagnetic two-leg
spin ladder. The magnetization curve of BIP-TENO
measured at low temperatures in high magnetic fields
up to 50T [2], and up to 70T very recently [3] In these
experiments the magnetization plateau atMs/4 (Ms is
the saturation magnetization) is observed between 45
T and 65 T.

This plateau should be non-trivial. because this
must occur with a two-fold degeneracy in the ground
state, associated with the spontaneous breakdown of
the translational symmetry, based on the necessary
condition of the magnetization quantization [4]. We
have already proposed the “dimer mechanism”for this
plateau due to the third-neighbor interactions [5,6]
and succeeded to explain the magnetization curve
semiquantitatively. However, the required strength
of the third neighbor interactions is fairly larger. In
consideration of these situations, we propose another
mechanism for the Ms/4 plateau, the spin-Peierls
mechanism

A simplified model [1] of BIP-TENO is shown in
Fig. 1, although the real material is more complicated.
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Fig. 1. Simplified model of BIP-TENO. Open circles represent

S = 1 spins.

Both coupling constants are thought to be antiferro-
magnetic. In experimental estimation, it seems J⊥ �
J1.

The Hamiltonian of Fig. 1 is expressed as

H = J1

∑
l=1,2

L∑
j=1

�l,j ·�l,j+1 + J⊥

L∑
j=1

�1,j ·�2,j

− h
∑
l=1,2

L∑
j=1

Sz
l,j (1)

where � denotes the spin-1 operator, j the rung num-
ber and l = 1, 2 the leg number. The last term is the
Zeeman energy in the magnetic field h.

In the opposite limit J⊥ � J1 we can use the de-
generate perturbation theory [7]. When J1 = 0, all
the rung spin pairs are mutually independent. Thus, at
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M = Ms/4, half of the rung spin pairs are in the state

ψ(0, 0) =
1√
3

(∣∣∣∣ ↑↓
〉

+

∣∣∣∣ ↓↑
〉

−
∣∣∣∣ 0
0

〉)
, (2)

and the remaining half pairs are in the state

ψ(1, 1) =
1√
2

(∣∣∣∣ ↑0
〉

+

∣∣∣∣ 0
↑
〉)

, (3)

where ψ(Stot, S
z
tot) is the wave function of with the

quantum numbers Stot and Sz
tot. These two wave func-

tions have the lowest energies in the subspace of Sz
tot =

0 and Sz
tot = 1, respectively. The Ms/4 state is highly

degenerate as far as J1 = 0, because there is no restric-
tion for the configurations of these two states. This de-
generacy is lifted up by the introduction of J1. To in-
vestigate the effect of J1, we introduce the pseudospin
� with T = 1/2. The | ⇑〉 and | ⇓〉 states of the �
spin correspond to ψ(1, 1) and ψ(0, 0), respectively. Ne-
glecting the other seven states for the rung spin pairs,
the effective Hamiltonian can be written as, through
straightforward calculations

Heff =
∑

j

{
Jxy

eff (Tx
j T

x
j+1 + Ty

j T
y
j+1) + Jz

effT
z
j T

z
j+1

}
,(4)

in the lowest order of J1, where

Jxy
eff = (8/3)J1, Jz

eff = (1/2)J1, (5)

Thus, the Ms/4 plateau problem of the original model
in a magnetic field is mapped onto the M = 0 problem
of the T = 1/2 antiferromagnetic XXZ spin chain
with the nearest-neighbor interaction in the absence of
magnetic field.

Fig. 2. Physical picture of the spin-Peierls mechanism. The

distance between neighboring two spins on a leg changes al-

ternatingly. This is the origin of the bond-alternation. The

rectangle denote the effective singlet pair of two T spins.

Let us introduce the bond-alternation to Heff, com-
ing from the lattice distortion to Heff, as

Jxy,z
eff ⇒ Jxy,z

eff {1 + (−1)jδ} (6)

where δ is the magnitude of the bond-alternation.
The energy gain of the � -system due to the bond-
alternation is proportional to δa where [8,9]

a = 4/(4 − η), η = 2/[(1 + (2/π) sin−1 ∆eff ] (7)

with ∆eff ≡ Jz
eff/J

xy
eff . Since the energy loss of the lat-

tice distortion is proportional to δ2, the condition for

the occurrence of the spontaneous lattice distortion is
a < 2. This mechanism is essentially the same as that
of the spin-Peierls transition. Thus we call our mecha-
nism “spin-Peierls mechanism”. In our case, we can see

a = 1.81 < 2 (8)

which means that the spin-Peierls mechanism is possi-
ble from the consideration of the energy. Our prelimi-
nary numerical calculation based on the S = 1 model
shows that the a is very close to 1.8 as conjectured in
(8).

We can develop a similar consideration for the
(3/4)Ms plateau case, where | ⇓〉 and | ⇑〉 should be
modified to

| ⇓〉 =
1√
2

(∣∣∣∣ ↑0
〉

+

∣∣∣∣ 0
↑
〉)

, | ⇑〉 =

∣∣∣∣ ↑↑
〉

(9)

respectively. In this case, we see

∆eff = 1/4, a = 1.76 < 2 (10)

which also results in the possibility of the spin-Peierls
mechanism. A similar analysis can be applied also to
the Ms/2 plateau of the two-leg S = 1/2 spin ladder.

We have proposed the spin-Peierls mechanism for
the Ms/4 and (3/4)Ms plateaux of the S = 1 two-
leg ladder. The spin-Peierls mechanism and the third
neighbor interaction may work in a cooperative way to
form singlet dimer pairs of the � picture . However,
more detailed investigations may be required for the
full understanding of the magnetization curve of the
BIP-TENO.
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