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Abstract

We study the isolated resonances occurring in conductance fluctuations of ballistic electron systems with a classically
mixed phase space. In particular, we calculate the conductance and Wigner-Smith time as well as scattering states
and eigenstates of the open and closed cosine billiard, respectively. We demonstrate that the observed isolated
resonances and their scattering states can be associated with eigenstates of the closed system. They can all be
categorized as hierarchical or regular, depending on where in a phase space representation the corresponding
eigenstates are concentrated.
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One of the properties in which classical chaos mani-
fests itself quantum mechanically is the conductance.
A well known example is the occurrence of the uni-
versal conductance fluctuations in billiards whose
classical counterparts show completely chaotic dy-
namics [1]. However, generic systems are neither com-
pletely chaotic nor integrable but have a mixed phase
space, where regions of regular motion coexist with
those of chaotic motion [2]. A semiclassical analysis
for the quantum mechanical analog of such systems
showed that the graph of conductance G vs control
parameter should be a fractal [3].

Surprisingly, for the cosine billiard, a system with a
mixed phase space, a recent numerical study did not
show these fractal conductance fluctuations but in-
stead sharp isolated resonances with a width distribu-
tion covering several orders of magnitude [4]. The reso-
nances in the conductance are accompanied by equally
sharp but much stronger resonances in the Wigner-
Smith time. We will show that the origins of these
resonances are quantum mechanical states with phase
space portraits that are concentrated on the regular
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Fig. 1. The cosine billiard for the parameters W/L = 0.18

and M/L = 0.11 with a gray-scale plot of the density of the

resonant scattering state leading to the Husimi representation

shown in Fig. 2 b).

and hierarchical regions of phase space [5], in aggree-
ment with the conjecture of Ref. [6].

We study the cosine billiard as in Ref. [4] , either
closed (hard wall boundaries at x = 0 and x = L)
or with semi-infinite leads attached to both sides. The
boundary consists of the line y = 0 and

y(x) = W +
M

2

[
1 − cos

(
2πx

L

)]
(1)

for 0 ≤ x ≤ L (see Fig. 1). The classical phase space
structure can be tuned by varying the ratios W/L and
M/L. For W/L = 0.18 and M/L = 0.11 the system
has a mixed phase space. We take E0 = h̄2π2/(2mW 2)
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Fig. 2. Wigner-Smith delay time τ (upper part) and conduc-

tance G (lower part) vs energy E. In the upper part, the labels

of the resonances indicate whether they correspond to regular

(r) or hierarchical (h) eigenstates of the closed system.

as the unit of energy.
Fig. 2 shows the isolated resonances occuring in

both the conductance and the Wigner-Smith time de-
lay τ = −ih̄

2N
Tr (S†dS/dE) (2N is the dimension of the

S-matrix). The calculations of S and τ are outlined in
Refs. [4,7].

In order to elucidate the origin of the resonances,
we have calculated the associated scattering states of
the open system as well as the eigenstates of the corre-
sponding closed system. Fig. 3 shows a comparison of
the Husimi representation of the eigenstates and scat-
tering states with the classical phase space structure
[7]. The energy of the scattering state coincides with
the resonance energy 2041.109 and the eigenenergy of
the eigenstate differs from this energy by less than 10%
of the mean level spacing. It is apparent that this res-
onance is due to an eigenstate with a phase space rep-
resentation concentrated on the hierarchical part of
phase space. Repeating this analysis for the other res-
onances allows for them to be labeled as hierarchical
or regular depending on the part of phase space that
their Husimi representations are concentrated on. The
resulting labels are shown in Fig. 2.

To conclude, we have analyzed phase space portraits
of both eigenstates of a closed billiard and scattering
states of the opened billiard. This allowed us to iden-
tify the origin of sharp, isolated resonances in the con-
ductance and Wigner-Smith time of the billiard and to
classify the resonant states as either regular or hierar-

a)

b)

Fig. 3. (a) Husimi representation of a hierarchical eigenstate of

the closed system. (b) A similar phase space representation of

the corresponding scattering state (see also Fig. 1). Also shown

are the most important Kolmogorov-Arnold-Moser tori (solid

lines) and the main border to the chaotic region (dashed line).

chical. In addition, we saw that the definition of hierar-
chical states of Ref. [5] can be transferred to scattering
states as well.
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