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Abstract

We present a numerical study of the quasi-particle density of states (DoS) of two-dimensional d-wave superconduc-
tors in the presence of disorder. We find qualitatively different behavior for smooth and short-ranged disorder. In
the former case, we find power law scaling of the DoS with an exponent depending on the strength of the disorder
and the superconducting order parameter in quantitative agreement with the theory of Nersesyan et al. (Phys. Rev.
Lett. 72, 2628 (1994)). For strong disorder, a qualitative change to an energy independent DoS occurs. In contrast,
for short-ranged disorder of sufficient strength, we find localization and derive the dependence of the localization
length on the disorder strength from the system size dependence of the micro gap in the DoS near zero energy.
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The distinguishing feature of d-wave superconduc-
tors as compared to their more conventional s-wave
brethren, is the existence of four zero energy ‘nodes’
on the Fermi surface. The relativistic quasi-particle ex-
citations existing near these nodes determine the low
energy transport and thermodynamic properties of the
d-wave superconductors. While for a full understand-
ing of these properties self-consistent theories are nec-
essary, we study in the present contribution the most
simple, non-selfconsistent system. A further motiva-
tion for doing so, is that this system realizes two of the
new universality classes [1]. In particular, we are inter-
ested in the influence of different kinds of disorder. In
contrast to many other disordered systems, the details
of disorder are not irrelevant for global observables in
the d-wave superconductors. In particular, it matters
whether or not the disorder effectively couples the four
different quasi-particle sectors. This coupling in turn
depends on the range of the disorder potential.

We consider the lattice quasi-particle Hamiltonian
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with the hopping matrix elements ¢;;, and order
parameter A;;. The sums run over points of a two-
dimensional square lattice with spacing a = 1 and the
operators c}o create a spin-1/2 particle of spin o at site
i. In the following, we take only into account on-site
potentials and nearest-neighbor hopping of strength
t = 1. The order parameter Ai; = A(di j+e, — i e, )
has d,2_,2-symmetry. We study correlated disorder
of strength W with a correlation length £ of 0.1 and
2, respectively. For € = 0.1 the four Dirac ‘nodes’ are
strongly coupled, while for £ = 2 they are effectively
decoupled. We will show that these two limits exhibit
qualitatively different behavior.

We first analyze long-ranged disorder (¢ = 2). Fig. 1
shows the quasi-particle density of states (DoS) near
zero energy. The inset zooms in on the ‘micro gap’
region with a linear DoS [2]. Since the four nodes are
effectively decoupled, the physics of the problem is that
of a single disordered Dirac node. Nersesyan et al. [3]
predict for the DoS p(FE) of this system,
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Fig. 1. Density of states for A = 1, correlation length & = 2,
and disorder of strength W = 0,1,...,8,10 (bottom to top
at £ = 0). The system size is L = 33 and the broadening
(introduced to as to suppress oscillations on the scale of the
mean level spacing) I' = 0.05. The inset shows the same data
on a smaller scale with I' = 0.0005. The finite DoS at £ = 0
is due to the finite broadening I'.
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Fig. 2. Exponents « extracted from the fitted curves in Fig. 1
as a function of disorder W for A = 1. The solid curve is the
result of NTW, eq. (2).
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We have fitted power laws to the DoS and show in
Fig. 2 a comparison of the numerically obtained expo-
nents « with the prediction of eq. (2) [4]. The agree-
ment is good up to g = 1, the limit of applicability of
the scaling law. For larger disorder the DoS becomes
energy-independent.

Turning now to the case of short-ranged disorder
(¢ = 0.1), we find a more or less constant DoS with a
linear suppression in the micro gap region close to zero
energy. It is this micro gap that we concentrate on.
The width of the micro gap is given by the mean level
spacing of one localization volume or, if the localiza-
tion length exceeds the system size, by the mean level
spacing of the system [5]. As can be seen in Fig. 3, for
moderately strong disorder the width of the micro gap
first shrinks with increasing system size and eventually
saturates when the system size exceeds the localization
length. By studying the system size dependence of the
micro gap for various disorder strength we can thus ex-
tract the dependence of the crossover length scale (lo-
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Fig. 3. Density of states for correlation length & = 0.1, disorder

strength W = 9 and system sizes M = 6,...,25.
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Fig. 4. The crossover length scale (localization length) for
short-ranged scatterers (§ = 0.1) as a function of disorder
strength W.

calization length) on the disorder strength (Fig. 4).

To summarize, we have shown that short-ranged and
long-ranged disorder leads to qualitatively different
behavior in d-wave superconductors. While for long-
ranged disorder the quasi-particle density of states
shows critical behavior as predicted by Nersesyan et al.
[3], localization is observed for short-ranged disorder.
From the system size dependence of the micro gap we
obtained the disorder dependence of the localization
length.
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