

# Weak ferrimagnetism, compensation point and magnetization reversal in $\text{Ni}(\text{HCOO})_2 \times 2\text{H}_2\text{O}$

H. Kageyama <sup>a</sup>, D.I.Khomskii <sup>b</sup>, R.Z.Levitin <sup>c</sup>, A.N.Vasiliev <sup>c</sup>

<sup>a</sup>*Materials Design and Characterization Laboratory, Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan*

<sup>b</sup>*Solid State Physics Laboratory, Materials Science Center, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands*

<sup>c</sup>*Physics Faculty, Moscow State University, Moscow 119899, Russia*

---

## Abstract

Nickel (II) formate dihydrate  $\text{Ni}(\text{HCOO})_2 \times 2\text{H}_2\text{O}$  shows peculiar magnetic response at  $T < T_N = 15.5$  K. The magnitude of weak magnetic moment increases initially below  $T_N$ , equals zero at  $T^* = 8.5$  K and increases again at lowering temperature. The sign of low field magnetization at any given temperature is determined by the sample's magnetic prehistory and the signs are opposite to each other at  $T < T^*$  and  $T^* < T < T_N$ . This behavior suggests that  $\text{Ni}(\text{HCOO})_2 \times 2\text{H}_2\text{O}$  is a weak ferrimagnet and  $T^*$  is a compensation point.

---

The nickel (II) formate dihydrate  $\text{Ni}(\text{HCOO})_2 \times 2\text{H}_2\text{O}$  crystallizes in monoclinic  $P2_1/c$  spacegroup and include four formula units in the unit cell with  $a = 8.60$  Å,  $b = 7.06$  Å,  $c = 9.21$  Å,  $\beta = 96.5^\circ$  [1]. The structure contains two nonequivalent subsystems of  $\text{Ni}^{2+}$  ions and the oxygen octahedrons coordinating the  $\text{Ni}_1$  and  $\text{Ni}_2$  ions are tilted with respect to each other within both subsystems.

The temperature dependencies of magnetization of  $\text{Ni}(\text{HCOO})_2 \times 2\text{H}_2\text{O}$  powder sample taken in zero-field-cooling (ZFC) and field-cooling (FC) regimes at  $H = 0.01$  T are shown in Fig. 1. The inset to this figure shows temperature dependence of inverse magnetic susceptibility in a wide temperature range. Evidently, the main exchange interaction in  $\text{Ni}(\text{HCOO})_2 \times 2\text{H}_2\text{O}$  is antiferromagnetic. At heating in ZFC regime the sample shows firstly large "paramagnetic" response at low temperatures, then the magnetic moment gradually decreases with increasing temperature, changes to "diamagnetic" at  $T^* = 8.5$  K, and once again became paramagnetic above  $T_N = 15.5$  K. At subsequent cooling in FC regime the magnetic behavior of the sample at low temperatures appears to be mirror-like with respect to magnetization sign as compared with ZFC measurements.

The magnetization curves taken in ZFC regime in the range 2 – 15 K are ferromagnetic-like, i.e. they show spontaneous magnetic moment, are weakly nonlinear at low fields and tend to linear dependences at high magnetic field. The absolute values of magnetization are by two orders of magnitude smaller than that corresponding to parallel alignment of  $\text{Ni}^{2+}$  magnetic moments. Therefore, the experimental data presented suggest that below  $T_N$  a weakly ferrimagnetic state is realized in  $\text{Ni}(\text{HCOO})_2 \times 2\text{H}_2\text{O}$ , and  $T^*$  is a compensation temperature.

The analysis of the magnetic superexchange pathways in nickel formate dihydrate shows that the nickel ions in  $\text{Ni}_1$ -subsystem are connected to each other and to nickel ions in  $\text{Ni}_2$ -subsystem. There are no superexchange pathways within the  $\text{Ni}_2$  subsystem, meaning that in the absence of  $\text{Ni}_1 - \text{Ni}_2$  exchange interactions the  $\text{Ni}_2$  subsystem can be considered paramagnetic.

The model suggested for the appearance of weak ferrimagnetism and compensation point in  $\text{Ni}(\text{HCOO})_2 \times 2\text{H}_2\text{O}$  is as follows. Weak ferrimagnetism arises from the competition of weak ferromagnetic moments of two nonequivalent antiferromagnetic  $\text{Ni}_1$  and  $\text{Ni}_2$  subsystems. The compensation point is due to the difference in temperature dependencies of weak ferro-



Fig. 1. The temperature dependencies of magnetization of  $\text{Ni}(\text{COOH})_2 \times 2\text{H}_2\text{O}$  at  $H = 0.01$  T taken in zero-field-cooling ( $\circ$ ) and field-cooling ( $\bullet$ ) regimes.

magnetic moments of  $\text{Ni}_1$  and  $\text{Ni}_2$  subsystems. The deviations from antiparallel alignment of magnetic moments within these subsystems are caused by single ion anisotropy. At cooling below the Neel temperature the weak magnetization of  $\text{Ni}_1$  subsystem exceeds that of  $\text{Ni}_2$  subsystem. This occurs because  $M_1(T)$  dependence is much steeper than  $M_2(T)$  dependence in vicinity of  $T_N$ . At further cooling the values of  $\text{Ni}_1$  and  $\text{Ni}_2$  sublattice magnetizations approach each other. If magnetic anisotropy in  $\text{Ni}_2$  subsystem is “larger” than that of  $\text{Ni}_1$  subsystem, at low temperatures the weak magnetization of  $\text{Ni}_2$  subsystem will prevail.

In conclusion, the phenomena of weak ferrimagnetism is found in nickel (II) formate dihydrate  $\text{Ni}(\text{HCOO})_2 \times 2\text{H}_2\text{O}$  containing only one type of magnetic ions. These ions constitute two canted antiferromagnetic subsystems whose competition results in compensation point and magnetization reversal.

## References

[1] von K. Krogmann and R. Mattes, *Z. Krist.* **118** (1963) 291.