

# Hall effect anomalies in Kondo-lattice $\text{CeAl}_2$

A.V.Bogach <sup>a</sup>, N.E.Sluchanko <sup>a,1</sup>, V.V.Glushkov <sup>a</sup>, S.V.Demishev <sup>a</sup>, H.Ohta <sup>b</sup>,  
G.S.Burkhanov <sup>c</sup>, O.D.Chistyakov <sup>c</sup>

<sup>a</sup>*General Physics Institute of RAS, 38 Vavilov str., Moscow, 119991, Russia*

<sup>b</sup>*Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 Japan*

<sup>c</sup>*Institute of Metallurgy and Material Science of RAS, 49 Leninskii Prospect, Moscow, 119991, Russia*

## Abstract

Anomalous Hall effect in paramagnetic and modulated antiferromagnetic (AFM) phases of a Kondo-lattice  $\text{CeAl}_2$  has been studied in a wide range of temperatures (1.8-300K) and magnetic fields (up to 80 kOe). It was shown that the large anomalous skew scattering component  $R_H^a$  has a broad maximum around  $T \approx 4\text{K}$  depressing by a factor of 3 in  $H \approx 80$  kOe. A non-monotonous behavior of anomalous magnetic component  $R_H^{am}$  in magnetic fields below 40 kOe which also demonstrates a narrow peak of  $R_H^{am}(T)$  at  $T = T_N \approx 3.85\text{K}$  is likely to be attributed to the AFM-domains reorientation process at liquid helium temperatures. The problem of two magnetic phase transitions and complicated activation type behavior of  $R_H^a$  in this intermetallic “coexistence compound” are discussed.

**Key words:** spin fluctuations, Kondo-lattice, antiferromagnetism

An anomalous transport properties and especially unusual Hall effect have been observed in a number of Kondo-lattice compounds and qualitatively explained in the framework of skew scattering models [1,2]. Here the results of Hall coefficient and magnetoresistance measurements are presented for the “coexistence compound”- magnetic Kondo-lattice  $\text{CeAl}_2$ . The issue of this study was twofold – (i) to verify in details the validity of the skew scattering models [1,2] and (ii) to investigate the mysterious magnetic phase transitions [3,4] in  $\text{CeAl}_2$  with the help of high precision transport measurements.

The experiments have been carried out on high quality polycrystalline samples of this cubic C15 Laves-phase material in wide temperature range 1.8-300K in magnetic fields up to 80 kOe. To measure the angular dependencies of Hall resistivity and magnetoresistance in  $\text{CeAl}_2$  the sample was rotated in magnetic field  $\mathbf{H}$  around the current  $\mathbf{I}$  axis in transversal ( $\mathbf{I} \perp \mathbf{H}$ ) geom-

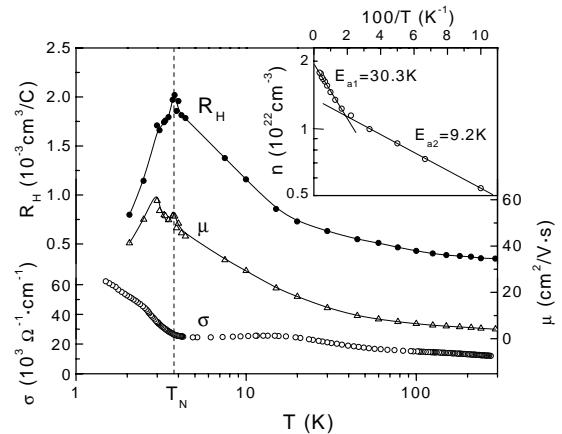



Fig. 1. Temperature dependencies of the Hall coefficient, conductivity and mobility in  $\text{CeAl}_2$ . Inset shows the activation behavior of the reciprocal Hall coefficient  $n = (R_H^a e)^{-1}$ .

etry. It was found [5] that a single harmonic behavior of the Hall resistivity is destroyed in magnetic fields  $H \geq 3$  kOe and even harmonics appear to contribute

<sup>1</sup> Corresponding author. Present address: General Physics Institute of RAS, 38 Vavilov str., Moscow, 119991, Russia. E-mail: nes@lt.gpi.ru

in total Hall signal. To eliminate the effects of magnetoresistance contribution in the Hall resistivity the magnetoresistance measurements have been also carried out. The data analysis [5] allowed to deduce the anomalous components  $R_H^a$  and  $R_H^{am}$  of the Hall effect in CeAl<sub>2</sub>. Temperature and magnetic field dependences of  $R_H^a$  and  $R_H^{am}$  parameters are shown in Figs.1-2. Among these two contributions the large anomalous positive component  $R_H^a$  (skew scattering contribution [1,2]) demonstrates a broad maximum around  $T \approx 4$ K (Fig.1) which is depressed drastically (by a factor of 3) in magnetic field  $H \approx 80$  kOe (Fig.2). The decrease of magnitude of  $R_H^a$  in magnetic field depends only slightly from the temperature in the interval  $3.4K < T_N < 4.2K$  in the vicinity of the broad maximum of  $R_H^a$ . Such a strong  $R_H^a(H)$  dependence can be attributed to the depression of the Kondo-compensation mechanism in magnetic field. Indeed, in the case of CeAl<sub>2</sub>, where the Kondo temperature is found to be  $T_K \approx 5$ K [3], one can expect an essential decrease of amplitude of the Abrikosov-Suhl resonance in moderate magnetic field  $H \leq 80$  kOe resulting to the reduction of the  $R_H^a$  component [1].

The most striking feature of the skew scattering component temperature dependence  $R_H^a(T)$  in this intermetallic compound is a complicated **activation type behavior**. The plot  $\log(R_H^a e)^{-1} = f(1/T)$  (inset of Fig.1) allows to establish two activation processes in transport with the energies  $E_{a1} = 30.3 \pm 0.8$ K (in the interval 70-300K) and  $E_{a2} = 9.2 \pm 0.1$ K (10-40K). Additionally, the reciprocal mobility of charge carriers  $\mu^{-1}(T) = (\sigma(T)R_H(T))^{-1}$  (inset of Fig.2) is characterized by Curie-Weiss type behavior  $\mu^{-1}(T) \sim \chi^{-1}(T) \sim (T + \Theta_i)$  in these intervals with  $\Theta_1 = -350 \pm 20$ K and  $\Theta_2 = -7.5 \pm 0.5$ K correspondingly. Among these two findings the first one is out of the conclusions of the skew scattering models [1,2], while the analytical dependence  $\mu(T) \sim \chi(T)(1 - \chi(T))$  predicted in [1,2] for temperature range  $T \gg T_K \approx 5$ K is very similar to that one observed in this study. However, to analyze in detail the data of Figs.1-2 one needs also to estimate the effects of real crystal electric fields in CeAl<sub>2</sub> ( $\Delta_{CF} \approx 100$ K [3]) additionally to approaches [1,2].

The anomalous magnetic contribution in the Hall coefficient  $R_H^{am}$  is characterized by (i) a narrow maximum at  $T = T_N \approx 3.85$ K (Fig.1) and (ii) a non-monotonous behavior of  $R_H^{am}$  in the magnetic field below 40 kOe (Fig.2). A maximum of the anomalous magnetic Hall coefficient  $R_H^{am}(H)$  is observed at  $H_m \approx 15$  kOe, moreover, the amplitude of this peak increases dramatically when the temperature decreases below  $T_N$  (Fig.2). Following to the arguments suggested in [6] the  $R_H^{am}(H)$  anomaly can likely be attributed to the AFM-domains reorientation process at liquid helium temperatures.

Another interesting feature of the  $R_H^{am}(H)$  dependencies is the change of sign which occurs in the mag-

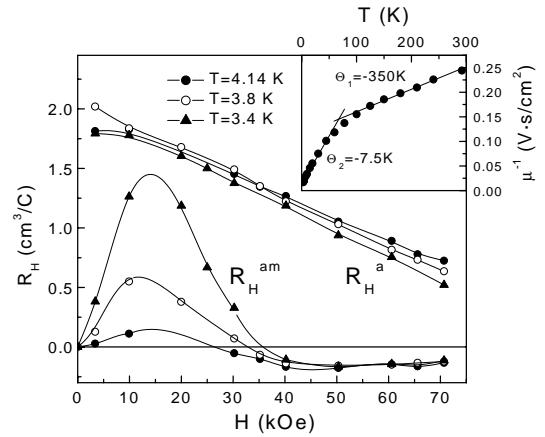



Fig. 2. Anomalous components of the Hall coefficient  $R_H^a$  and  $R_H^{am}$  versus applied magnetic field in CeAl<sub>2</sub>. Inset shows the reciprocal mobility  $\mu_H^{-1}(T)$  temperature dependence.

netic fields interval 30-40 kOe (Fig.2). It is important to stress here that the  $R_H^{am}(H)$  sign inversion points are placed just above the AFM phase boundary and especially for the cases of  $T = 4.14$ K and  $T = 3.8$ K can be attributed to “the unknown magnetic phases” [3-6] on the  $H-T$  phase diagram of CeAl<sub>2</sub>. Thus, the last finding contributes in favor of conclusion [3,6] of a rather complicated magnetic behavior with short range ferromagnetic correlations which have been established in CeAl<sub>2</sub> just above the AFM phase boundary. Moreover, to support the arguments of [3] in favor of two magnetic phase transitions in CeAl<sub>2</sub> the mobility  $\mu_H(T)$  demonstrates two narrow peaks at 3.85K and 3.0K (Fig.1). To clarify in more details the H-T magnetic phase diagram in this “coexistence” compound the anomalous transport measurements are in progress now.

This work was supported by the INTAS program 00-807 and RFBR grants 01-02-16601 and 02-02-06720.

## References

- [1] P.Coleman, P.W.Anderson, T.V.Ramakrishnan, Phys. Rev. Lett., **55** (1985) 414.
- [2] M.Hadzic-Leroux, A.Hamzic, A.Fert et.al, Europhys. Lett., **1** (1986) 579.
- [3] F.Steglich, C.D.Bredl, M.Loewenhaupt et.al, J. Phys. Coll., **C5-40** (1979) 301.
- [4] R.Schefzyk, W.Lieke, F.Steglich, Sol. St. Commun., **54** (1985) 525.
- [5] N.E.Sluchanko, A.V.Bogach, V.V.Glushkov et.al, JETP Lett., **76** (2002) in print.
- [6] M.Croft, I.Zoric, R.D.Parks, Phys. Rev. B, **18** (1978) 345.