

Dynamic Jahn-Teller Effect and Superconductivity in MgB₂

Jaejun Yu ^{a,1}, Young Woo Son ^b, Jisoon Ihm ^b

^a*School of Physics and Center for Strongly Correlated Materials Research, Seoul National University, Seoul 151-747, Korea*

^b*School of Physics, Seoul National University, Seoul 151-747, Korea*

Abstract

We propose a novel mechanism of superconductivity in MgB₂ based on the dynamic Jahn-Teller interactions between the doubly degenerate $p\sigma$ electronic states and the E_{2g} phonon modes. The hopping motion of holes in the $p\sigma$ states of the 2D B layers is constrained by accompanying phonons, and thereby a non-trivial superconducting state with multiple order parameters is found to arise from conventional electron-phonon interactions due to the presence of additional pairing channels.

Key words: superconductivity; MgB₂; multiple order-parameters; Jahn-Teller effect

Since the discovery of high T_c superconductivity near 40 K in MgB₂,[1] experiments and theories have flourished and exhausted various possible issues on the physical properties of the brand-new MgB₂ superconductor. One of the key issues in MgB₂ is about the origin of high T_c superconductivity, which seems to share little with the previously known Cu-oxide high T_c superconductors. It naturally led to a revival of interest in the highest T_c attainable by the conventional electron-phonon mechanism of superconductivity.

Despite such strong evidences in support of electron-phonon mechanism of superconductivity in MgB₂,[2] however, recent experiments on thermal and spectroscopic properties[3,4] suggested anomalous two-gap superconductivity, which is attributed to the electronic structure of the 2D σ - and 3D π -bands with highly anisotropic electron-phonon couplings[5]. Although the observed superconducting transition temperature of \sim 40 K by the large electron-phonon coupling is plausible according to several theoretical calculations,[5] however, there still remains some issues on the predicted values of electron-phonon coupling constant λ in comparison with experiments. Further, an important aspect of the electronic structure of MgB₂, that is, the presence and role of the doubly degenerate

$p\sigma$ electronic states coupled to the doubly degenerate E_{2g} phonon modes near E_F , has not been addressed properly. In fact, various physical properties of this coupled degenerate states have been known as the $E \otimes e$ Jahn-Teller or vibronic system,[6] but its implications on MgB₂ have not been considered yet.

The MgB₂ system consists of B layers with graphite structure and the intercalated Mg ions between the layers[7]. Due to the hybridization of Mg s and B $p\pi$ states,[5] the electronic structure of MgB₂ exhibits a unique feature of $p\sigma$ states crossing the Fermi level E_F , strongly coupled to the high frequency phonons with $\omega_{E_{2g}} \approx 70$ meV with large anharmonicity. The doubly degenerate $p\sigma$ states belong to the E_g symmetry representation at the Γ -point, where small hole pockets of $p\sigma$ -bands form almost two-dimensional Fermi surfaces.

The E_g electron doublet and E_{2g} phonon doublet states for the single hexagonal B unit cell can be represented by the so-called $E \otimes e$ Jahn-Teller model[6]. A typical form of the $E \otimes e$ Hamiltonian can be written by

$$h_0 = \sum_{\alpha=\pm} \omega_0 (a_{\alpha}^{\dagger} a_{\alpha} + \frac{1}{2}) + g\omega_0 \sum_{\alpha=\pm} (a_{-\alpha} + a_{\alpha}^{\dagger}) c_{-\alpha}^{\dagger} c_{\alpha} \quad (1)$$

where a_{α} and c_{α} ($\alpha = \pm$) correspond to the phonon doublet and electron doublet states respectively. It is

¹ Corresponding author. E-mail: jyu@physa.snu.ac.kr

well known that one must take account of the dynamical phase of phonons, i.e., non-adiabaticity, in order to get a proper description of this model. In addition, defining a *pseudo-spin* operator by $J_z = L_z + \frac{1}{2}\tau_z = (n_{a+} - n_{a-}) + \frac{1}{2}(n_{c+} - n_{c-})$ with $n_{a\alpha} = a_{\alpha}^{\dagger}a_{\alpha}$ and $n_{c\alpha} = c_{\alpha}^{\dagger}c_{\alpha}$, one can show that $[h_0, J_z] = 0$, that is, the conservation of pseudo-spin. As results, the ground state with a single electron occupancy retains a two-fold degeneracy and acquires a pseudo-spin quantum number $\tau = \alpha/2 = \pm 1/2$, implying the coupled motion of electron and phonon with right- or left-handed helicity in the phase space. More detailed characteristics of the ground and excited states of this model have been extensively discussed in the literature[6].

When an electron or hole moves from one site to another, the hopping process is affected by the pseudo-spin configuration at each lattice site. For the electron hopping term

$$H_1 = - \sum_{\alpha \langle ij \rangle \sigma} t_{0i} c_{\alpha i \sigma}^{\dagger} c_{\alpha j \sigma} \quad (2)$$

where σ represents the *real* spin of electrons, one can perform a unitary transformation projecting the ground state on the pseudo-spin configurations of the Jahn-Teller sites. It is noted that H_1 preserves the pseudo-spin symmetry, i.e., $[H, J_z] = 0$. In the weak coupling limit of Eq. (1) for small g , one can show that the effective pairing-Hamiltonian H_{eff} becomes[8]

$$\begin{aligned} H_{\text{eff}} = & \sum_{\alpha \mathbf{k} \sigma} \varepsilon_{\mathbf{k}} c_{\alpha \mathbf{k} \sigma}^{\dagger} c_{\alpha \mathbf{k} \sigma} \\ & - \sum_{\alpha \mathbf{k} \mathbf{k}'} V_{\mathbf{k} \mathbf{k}'}^0 c_{-\alpha \mathbf{k}' \uparrow}^{\dagger} c_{\alpha - \mathbf{k}' \downarrow}^{\dagger} c_{-\alpha - \mathbf{k} \downarrow} c_{\alpha \mathbf{k} \uparrow} \\ & - \sum_{\alpha \mathbf{k} \mathbf{k}'} V_{\mathbf{k} \mathbf{k}'}^1 c_{\alpha \mathbf{k}' \uparrow}^{\dagger} c_{-\alpha - \mathbf{k}' \downarrow}^{\dagger} c_{-\alpha - \mathbf{k} \downarrow} c_{\alpha \mathbf{k} \uparrow} \\ & - \sum_{\alpha \mathbf{k} \mathbf{k}'} V_{\mathbf{k} \mathbf{k}'}^2 c_{\alpha \mathbf{k}' \uparrow}^{\dagger} c_{\alpha - \mathbf{k}' \downarrow}^{\dagger} c_{\alpha - \mathbf{k} \downarrow} c_{\alpha \mathbf{k} \uparrow} \end{aligned} \quad (3)$$

Due to the peculiar nature of the residual electron-phonon interactions with the pseudo-spin symmetry, the hopping process generates additional pairing channels, i.e., three distinct channels contributing to the attractive interactions between electrons due to the exchange of phonons. An analogous residual electron-phonon coupling has been suggested for the case of doped C_{60} superconductors in terms of the kinematic constraint imposed by the Berry's phase due to the Jahn-Teller coupling at each site[9].

Since the effective pairing Hamiltonian has an extra pairing symmetry apart from the standard BCS model, one may expect a non-trivial gap structure with multiple order parameters. By solving the gap equations including the symmetry breaking hopping terms,[8] we obtained two-gap solutions, which are

responsible for the anomalous behaviors observed in specific heat data[3]. Unlike other theories,[5] both of the gaps are basically isotropic (except for a small anisotropic influence from the $p\pi$ bands located at a different region of the \mathbf{k} space). Two s-wave gaps are allowed here owing to the presence of additional quantum numbers for the pseudo-spin. Without pseudo-spins, there would be only one s-wave gap solution giving the lowest free energy. Our model for the dynamic Jahn-Teller mechanism is distinguished from other exotic cases with multiple order parameters or superconducting gaps, which were studied in relation to the heavy fermion systems.[10] It is emphasized that the dynamic Jahn-Teller state is qualitatively different from the usual electronic states with two-fold degeneracy. The pseudo-spin J_z conservation derived from the Jahn-Teller state acts as a strong constraint in the electron-phonon interactions and pairing interactions as well.

In summary we proposed a mechanism of superconductivity in MgB_2 based on a dynamic Jahn-Teller effect arising from the interplay between the doubly degenerate $p\sigma$ electronic states and the E_{2g} phonon modes. The pseudo-spin constraint imposed on the motion of holes opens up additional pairing channels, which contribute to the non-trivial superconducting properties in MgB_2 .

Acknowledgements

J.Y. acknowledges the support by the KOSEF through CSCMR. Y.-W.S and J.I. acknowledge the support by the KOSEF through the CNNC of the Sung Kyun Kwan University.

References

- [1] Jun Nagamatsu *et al.*, Nature(London) **410** (2001) 63.
- [2] D. G. Hinks *et al.*, Nature(London) **411** (2001) 457; S. L. Bud'ko *et al.*, Phys. Rev. Lett. **86** (2001) 1877.
- [3] F. Bouquet *et al.*, Phys. Rev. Lett. **87** (2001) 047001.
- [4] G. Karapetrov *et al.*, Phys. Rev. Lett. **86** (2001) 4374; G. Rubio-Bollinger *et al.*, Phys. Rev. Lett. **86** (2001) 5582.
- [5] A. Y. Liu *et al.*, Phys. Rev. Lett. **85** (2001) 087005; J. Kortus *et al.*, Phys. Rev. Lett. **86** (2001) 4656; J. M. An, W. E. Pickett, Phys. Rev. Lett. **86** (2001) 4366; K.-P. Bohnen *et al.*, Phys. Rev. Lett. **86** (2001) 5771.
- [6] I.B. Bersuker, V.Z. Polinger, *Vibronic Interactions in Molecules and Crystals*, (Springer-Verlag, Berlin, 1989).
- [7] T. Yildirim *et al.*, Phys. Rev. Lett. **87** (2001) 037001.
- [8] Y.W. Son *et al.*, cond-mat/0203204.
- [9] N. Manini *et al.*, Phys. Rev. B **49** (1994) 13008.
- [10] D.F. Agterberg *et al.*, Phys. Rev. B **60** (1999) 14868.