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Abstract

Vortex lattices of four-fold symmetric superconductors are studied numerically on the basis of the quasiclassical
theory. The four-fold symmetric anisotropy of the Fermi velocity or the superconducting gap function causes the
vortex lattice transformation. The transformation as observed in LuNi2B2C could be understood with the four-fold
symmetric anisotropy. We show the temperature and field phase diagram for four-fold symmetric superconductors
and the spatial structures of the pair potential and zero energy states in the case of the stable square vortex lattice
at the low field.
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Recently, Eskildsen et al. discovered vortex lat-
tice transformation for applied field � ‖ [001] in
LuNi2B2C[1]. As increasing H, the rhombic vortex
lattice changes into the square vortex lattice, and this
backs to rhombic vortex lattice again in a higher field.
The boundary between a rhombic lattice and square
lattice bends away approaching Hc2 and never crosses
upper critical field Hc2 line. Since the phase diagram
of vortex lattice is not known in all temperature and
field region in borocarbide superconductors, we inves-
tigate the stable vortex lattice configuration from basic
electronic properties. The angle resolved thermal con-
ductivity measurement suggests that the gap function
has a four-fold symmetric anisotropy and minimum
gap is located along (100) and (010)-directions[2]. The
band calculation and angular correlation of electron-
positron annihilation radiation measurements tell us
that the Fermi velocity is larger in (100) than in (010),
or angle resolved density of states on the Fermi surface
is larger in (110) than in (100)[3]. It seems reasonable
that the superconducting gap and angle-resolved den-
sity of states on the Fermi surface have in the same
direction (110).

Based on earlier theoretical studies with a four-fold
symmetric superconductors, it is expected that the vor-
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tex lattice can transform from triangular to square as
the magnetic field increases[4,5]. In addition, the orien-
tation of the vortex lattice can take two possible direc-
tions under the condition mentioned for borocarbide
superconductors. The [100]-direction square (�g) vor-
tex lattice is stabilized by the gap anisotropy, while the
[110]-direction square (�v) is stabilized by the Fermi
velocity anisotropy. These competing effect about vor-
tex lattice is nontrivial problem. To understand this
problem, we study vortex properties on the basis of the
quassiclassical theory.

We consider two-dimensional case in a real space.
With polar angle θ relative to [100] axis, Eilenberger
equations are

(2ω + �F (θ) ·Π) f(ω, �, θ) = 2∆(�, θ)g(ω, �, θ), (1)

(2ω − �F (θ) ·Π∗) f †(ω, �, θ) = 2∆∗(�, θ)g(ω, �, θ),(2)

where Π = � + (2πi/Φ0)�, � is vector-potential
and Φ0 is flux quantum. ω = πT (2n + 1) with inte-
ger n is Matsubara frequency. Normalization condition
g2 + ff † = 1. Pair potential and Fermi velocity are set
as ∆(�, θ) = Ψ(�)φ(θ), vF (θ) = vF v(θ). These angle-
dependence are written as
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φ(θ) =

√
1 − α cos 4θ

1 + α
β
(1 −

√
1 − β2)

, (3)

v(θ) =
1 + β cos 4θ√

1 − β2
. (4)

We assume the Fermi surface is cylindrical, gap func-
tion and Fermi velocity have four-fold symmetric
anisotropy. Concerning borocarbide superconductors,
the anisotropic parameter α and β are set as positive
sign. Self-consistent conditions for the pair potential
Ψ(�) and vector potential � are

Ψ(�) ln
Tc

T
= 2πT

∑
ω>0

[
Ψ(�)

ω
−

〈
φ(θ)f

v(θ)

〉]
, (5)

�×� ×� = −16π3

Φ0
N0TvF

∑
ω>0

Im 〈g�〉 . (6)

Here, 〈· · ·〉 = 1/2π
∫
· · · dθ, � = (cos(θ), sin(θ)). N0 is

the density of states at the Fermi energy. Once we have
the self-consistent solution, the local density of states
and free energy density are calculated by

N(�, E) = N0

〈
1

v(θ)
Re g(ω → −iE + η, θ, �)

〉
, (7)

F =
H2(�)

8π
− πTN0

∑
ω>0

〈
1 − g

1 + g

φ(θ)(Ψ∗f + Ψf †)
v(θ)

〉
.(8)

Here, a = (B/Φ0)
∫

cell
a d�.

Since the numerical calculation is time consuming,
we examine four kinds vortex lattices. Two kinds of
square vortex lattices are the nearest neighbor vortex
located along [100] or along [110]. Two kinds of trian-
gular vortex lattices are laid on [100] or on [110]. The
phase diagram of the vortex lattice is obtained by com-
paring free energy density of each case (see details in
Ref. 6).

The phase diagram of the vortex lattice for α =
0.3 and β = 0.3 is shown in Fig. 1. Although the
anisotropic parameters are estimated small, it is
enough for observed reentrant vortex lattice transfor-
mation to appear. It is remarkable that square vortex
lattice appears again in a higher field, and the low-field
stable square and high-field stable square orientation
are different. This result shows that the effect of the
gap anisotropy becomes dominant for constructing
square vortex lattice as increasing H. The spatial
structures of the pair potential and zero-energy den-
sity of states are displayed in Fig. 2. This vortex lattice
is stable in a lower field, and corresponds to observed
square lattice[1]. The zero energy quasiparticles spread
in [100], which is consistent result expected by the gap
anisotropy.

In summary, due to the two anisotropy effects real-
ized in borocarbides, we obtain the rich vortex phase di-
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Fig. 1. The temperature and field phase diagram of the vortex

lattice for α = 0.3 and β = 0.3. � (�) is a square (triangular)

lattice. Hc2,0 is upper critical field at zero temperature. The

orientation “v” (“g”) is that the nearest neighbor vortex is

located along [110]-direction ([100]-direction).
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Fig. 2. (a) The spatial structure of the pair potential. (b) The

zero-energy local density of states. T = 0.25Tc, H = 0.15Hc2,0.

In this (T,H), �v is stable (see Fig. 1). Here, Ψ0 is for zero

temperature and zero field. In (b), the peak at the vortex center

(N(r, E = 0)/N0 ∼ 20) is truncated.

agram. The observed transformation of the vortex lat-
tice appears in reasonable field and temperature, which
is accessible experimentally. The two anisotropies in
the gap function and the Fermi velocity prefer differ-
ent orientation of the square vortex lattice. The ob-
served lattice transformation in borocarbide supercon-
ductors could be understood by this competing effect.
This physics on the vortex lattice transformation is
not limited in borocarbides. High-Tc cuprates and 2H-
NbSe2 are also in the same situation. We will study it
for future.
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