

Superconductivity in pyrochlore-type frustrated spin system, $\text{Cd}_2\text{Re}_2\text{O}_7$

Kazuyoshi Yoshimura^{a,1}, Hironori Sakai^{a,b}, Hiroyuki Ohno^a, Shinsaku Kambe^b,
Russell E. Walstedt^b

^aDepartment of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, JAPAN

^bAdvanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, JAPAN

Abstract

^{111}Cd NMR study has been performed in the normal state of superconducting pyrochlore oxide $\text{Cd}_2\text{Re}_2\text{O}_7$. A large orbital susceptibility is identified from K - χ analysis. The sharp decreases of both K and T_1^{-1} below T^* suggests a decrease in density of states which is apparently caused by a developing partial energy gap at the Fermi surface.

Key words:

pyrochlore oxide, spin frustration, superconductor, NMR

1. Introduction

Metallic pyrochlore oxides are very attractive from the aspect of magnetic frustrations since the superconductivity ($T_C \sim 1$ K) have been found in the metallic pyrochlore $\text{Cd}_2\text{Re}_2\text{O}_7$ [1,2]. So far, among the pyrochlore oxide series, $\text{Cd}_2\text{Re}_2\text{O}_7$ is a unique superconductor. In $\text{Cd}_2\text{Re}_2\text{O}_7$ system, the origin of superconductivity may be closely related with the structural transition at $T^* \sim 200$ K which has been known to accompany the decrease of resistivity and susceptibility as shown in Fig. 1.

From X-ray and electron diffraction analysis, it seems reasonable to suppose that the Re tetramerization may occur below T^* [3], which is a similar structural model as Hanawa *et al.* have been discussed [4]. Moreover, another phase transition of 1st order around 100K has been found by Re-NQR measurement [5].

Here, we will give a review of ^{111}Cd NMR results in the normal state of $\text{Cd}_2\text{Re}_2\text{O}_7$.

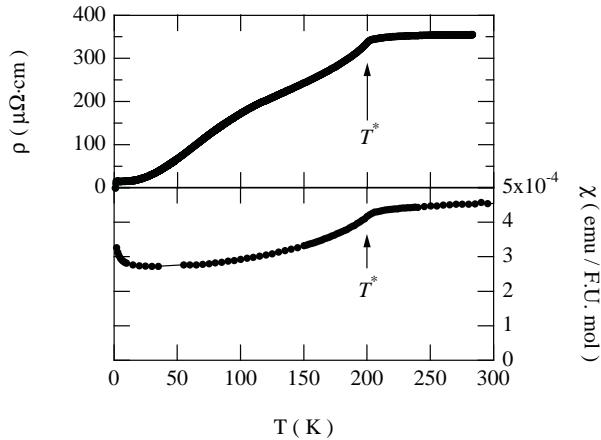


Fig. 1. Temperature dependence of resistivity and susceptibility in $\text{Cd}_2\text{Re}_2\text{O}_7$.

2. Results and Discussion

^{111}Cd NMR measurements for a powder sample were performed using a phase-coherent type pulsed spectrometer. Nuclear spin-lattice relaxation rates T_1^{-1} were measured by an inversion-recovery method

¹ Corresponding author. E-mail: kyhv@kuchem.kyoto-u.ac.jp

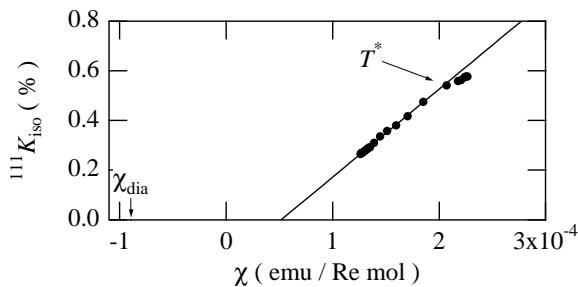


Fig. 2. K - χ plot for ^{111}Cd nuclei in $\text{Cd}_2\text{Re}_2\text{O}_7$.

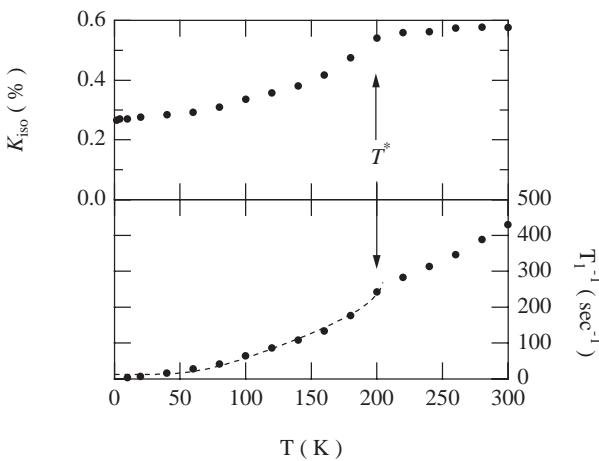


Fig. 3. Temperature dependence of isotropic Knight shift and spin-lattice relaxation rate T_1^{-1} for ^{111}Cd nuclei in $\text{Cd}_2\text{Re}_2\text{O}_7$.

for spin echo signals.

Figure 2 shows a so-called K - χ plot, where values of the isotropic Knight shift K_{iso} are plotted against the observed susceptibility with temperature as an implicit parameter. The hyperfine coupling constant A_{hf} below T^* is estimated to be $+198 \text{ kOe}/\mu\text{B}$. The A_{hf} slightly changes through T^* , which may come from RKKY-type oscillations between Cd nuclei and their neighbouring Re $5d$ spin polarization. Moreover, the χ -axis intercept of the K - χ plot indicates the presence of a large Re $5d$ orbital Van Vleck susceptibility.

Figure 3 shows the temperature dependence of isotropic Knight shift and spin-lattice relaxation rate T_1^{-1} for ^{111}Cd nuclei in $\text{Cd}_2\text{Re}_2\text{O}_7$. Above T^* T_1^{-1} increases linearly as expected for Korringa-like relaxation in metallic compounds. Approaching the high temperature, one might expect T_1 to be dominated by exchange-modulated local moment fluctuations on neighboring Re sites, sensed through RKKY-like transferred hyperfine couplings. We estimate $T_1^{-1} = 6T_{1S}^{-1} \sim 3 \times 10^3 \text{ sec}^{-1}$ about an order of magnitude larger than the observed $(T_1T)^{-1}$ at 300 K, where T_{1S}^{-1} is the spin relaxation rate of a single neighbor. This is a reasonable result, which underscores the itinerant

nature of the fermion dynamics at 300 K.

The variation of T_1 at low temperature is not in keeping with the behavior of a simple Fermi liquid. About the value of $(T_1T)^{-1}$ at low temperatures, Vyaselev *et al.* have reported that there is a ferromagnetic fluctuation in this system on the basis of a Stoner enhancement model. In the case of T_1 driven by n equal transferred HF couplings with uncorrelated fluctuations, Korringa product $(T_1TK_{\text{spin}}^2)^{-1}$ would be diminished by a factor n . Since $n \sim 6$ here, and intermediate cases are entirely possible, this offers a simpler and perhaps more intuitive mechanism to explain the experimental value of $(T_1T)^{-1}$ at low temperatures.

The Korringa product declines just below T^* , and remains approximately constant at 20-30 % of its non-interacting electron value below T^* . These effects appear to be definite evidence that a significant portion of the Fermi surface becomes gapped below T^* . This behavior exhibits a close parallel to that of an underdoped high- T_C cuprates. More detailed discussions will be reported elsewhere. [3]

So far, the crystal structure of the low temperature phase has not been determined yet. From ^{111}Cd NMR experiments, the structural phase transition at T^* and the pseudogap state below T^* seem to be essential for occurring a superconductivity at $\sim 1 \text{ K}$ in this system.

Acknowledgements

This study was supported by a Grant-in-Aid on priority area 'Novel Quantum Phenomena in Transition Metal Oxides', from Ministry of Education, Science, Sports and Culture, and also supported by a Grant-in-Aid Scientific Research of Japan Society for Promotion of Science(12046241, 12440195, 12740364)

References

- [1] H. Sakai and K. Yoshimura *et al.*, *J. Phys.:Condens. Matter* **13** (2001) L785.
- [2] M. Hanawa and Z. Hiroi *et al.*, *Phys. Rev. Lett.* **87** (2001) 187001.
- [3] H. Sakai and K. Yoshimura *et al.*, to be submitted *Phys. Rev. B* (2002).
- [4] M. Hanawa and Z. Hiroi *et al.*, Proc. 8th ISSP Int. Symp. on Correlated Electrons (Kashiwa, 2001).
- [5] K. Arai and M. Takigawa *et al.*, *J. Phys.:Condens. Matter* **14** (2002) L461.
- [6] O. Vyaselev and M. Takigawa *et al.*, to be appeared in *Phys. Rev. Lett.* **84** (2002).