

Elastic properties of $Re\text{-Ru}_4\text{Sb}_{12}$ (Re ; La, Pr)

T. Kumagai^a, Y. Nakanishi^{a,1}, H. Sugawara^b, H. Sato^b, and M. Yoshizawa^a

^aDepartment of Materials Science and Engineering, Iwate University, Morioka 020-8551, Japan

^bDepartment of Physics, Tokyo Metropolitan University, Hachioji 192-0397, Japan

Abstract

We have studied elastic properties of the filled skutterudite compounds $Re\text{-Ru}_4\text{Sb}_{12}$ (Re =La and Pr) by means of ultrasonic measurement. They both undergo a superconducting transition at temperature of $T_c=3.2$ K for La $\text{Ru}_4\text{Sb}_{12}$ and $T_c=1.0$ K for Pr $\text{Ru}_4\text{Sb}_{12}$. No distinct anomaly was observed at T_c in both compounds. In Pr $\text{Ru}_4\text{Sb}_{12}$, the determination of $4f$ ground state was desired whether to be Γ_1 or Γ_3 . The obtained result exhibit no softening towards low temperature in both $(C_{11}-C_{12})/2$ and C_{44} , indicating the $4f$ ground state of Pr ion to be Γ_1 singlet.

Key words: ultrasonic measurement; crystalline electric field effect; $Re\text{-Ru}_4\text{Sb}_{12}$; singlet ground state

The $Re\text{-Ru}_4\text{Sb}_{12}$ compounds (Re =rare earth) with the filled skutterudite crystal structure have attracted much attention since the discovery of non-Fermi liquid behavior in $\text{CeRu}_4\text{Sb}_{12}$ at low temperatures[1-3]. In these system, the band structure and $4f$ ground state affect pretty sensitively on their physical properties. It is because the hybridization between conduction band and $4f$ state is effectively much large due to its unique crystal structure. In order to elucidate the physical interpretation of observed unusual phenomena, systematic investigations such as substitution by La impurity, replacing the kind of rare earth element are inevitably necessary. From this point of view, La $\text{Ru}_4\text{Sb}_{12}$ and Pr $\text{Ru}_4\text{Sb}_{12}$ were selected as the first compounds for investigation. In $Re\text{-Ru}_4\text{Sb}_{12}$ groups La $\text{Ru}_4\text{Sb}_{12}$ and Pr $\text{Ru}_4\text{Sb}_{12}$ undergo a superconducting transition at temperature of $T_c=3.2$ K and $T_c=1.0$ K, respectively[3]. In Pr $\text{Ru}_4\text{Sb}_{12}$, in particular, the determination of $4f$ ground state of Pr ion split by crystalline electric field (CEF) effect has not been clarified. However, it was selected whether to be Γ_1 singlet or Γ_3 non Kramers doublet by the magnetic susceptibility measurement[3]. Ultrasonic measurement is powerful method to determine the $4f$ ground state of rare-earth ion. An elastic soft-

ening in $(C_{11}-C_{12})/2$ and/or C_{11} towards low temperature is expected in the case of Γ_3 non Kramers doublet, on the other hand no softening in all elastic constants is expected in the case of Γ_1 singlet ground state[4]. Thus, ultrasonic measurement was eager. In this paper, we report the elastic property of both La $\text{Ru}_4\text{Sb}_{12}$ and Pr $\text{Ru}_4\text{Sb}_{12}$. Especially in Pr $\text{Ru}_4\text{Sb}_{12}$, the $4f$ ground state of Pr ion and the possible level scheme is discussed by comparing previous $4f$ -level scheme determined by other experimental measurement.

The single crystals of La $\text{Ru}_4\text{Sb}_{12}$ and Pr $\text{Ru}_4\text{Sb}_{12}$ were grown by the Sb-flux method. The samples with rectangular shape of 2.2 2.3 2.8 mm³ for La $\text{Ru}_4\text{Sb}_{12}$, and of 2.2 2.3 2.8 mm³ for Pr $\text{Ru}_4\text{Sb}_{12}$ were prepared for the ultrasonic measurement. In order to observe the ultrasonic pulse echoes with an exponential decay, we polished carefully the surfaces of sample to be parallel. The LiNbO₃ transducers for the generation and detection of the sound waves with frequencies 5'10 MHz were bonded on the surfaces of the sample by an elastic polymer Thiokol. The sound-wave velocity v was detected by an ultrasonic apparatus based on the phase-comparison method. In the estimation of the elastic constant $C = \rho v^2$, we used the mass density $\rho = 8.338$ g/cm³ and 8.367 g/cm³ from the lattice constant $a = 9.277$ (Å) and 9.270 (Å) of

¹ Corresponding author. E-mail: yoshiki@iwate-u.ac.jp

the present sample of La Ru₄Sb₁₂ and Pr Ru₄Sb₁₂, respectively. Figure 1 shows the temperature dependence of elastic constants C_{11} , $(C_{11}-C_{12})/2$ and C_{44} for LaRu₄Sb₁₂. All measured elastic constants increase monotonically with decreasing temperatures. No distinct anomaly was observed at $T_c = 3.2$ K in all measures elastic constants. Figure 2 shows the temperature dependence of elastic constants C_{11} , $(C_{11}-C_{12})/2$ and C_{44} for PrRu₄Sb₁₂. All measured elastic constants increase monotonically with decreasing temperatures. The absolute values of each elastic constants and calculated bulk modulus $C_B = (C_{11} + C_{12})/3$ and Poisson ratio $\nu = C_{12}/(C_{11} + C_{12})$ from C_{11} and $(C_{11}-C_{12})/2$ for LaRu₄Sb₁₂ and PrRu₄Sb₁₂ at 77 K are listed in Table I.

Table 1
The absolute values of each elastic constants (GPa) and estimated bulk modulus C_B (GPa), Poisson ratio ν of PrFe₄P₁₂, NdFe₄P₁₂ and CeRu₄Sb₁₂ at 77 K.

	a (Å)	C_{11} (GPa)	$(C_{11}-C_{12})/2$ (GPa)	C_{44} (GPa)	C_B (GPa)	ν
LaRu ₄ P ₁₂	9.2774	167.6	34.5	15.2	121.6	0.37
PrRu ₄ P ₁₂	9.2701	127.5	30.2	14.2	80.5	0.33

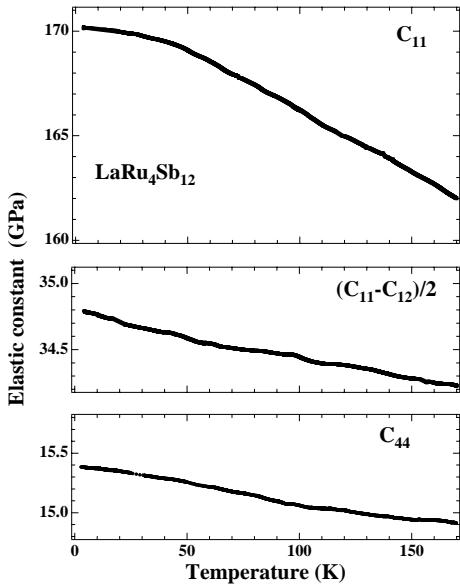


Fig. 1. Temperature dependence of elastic constants C_{11} , $(C_{11}-C_{12})/2$ and C_{44} for LaRu₄Sb₁₂. Inset shows the low-temperature behavior of them on an expanded scale. Arrows indicate a superconducting transition temperature.

The obtained results of Pr Ru₄Sb₁₂ provide us the following suggestions. The experimental fact; no softening towards low temperatures was observed, indicates that the ground state of 4f-multiplet is Γ_1 singlet, not Γ_3 non-Kramers doublet. If it is latter, an

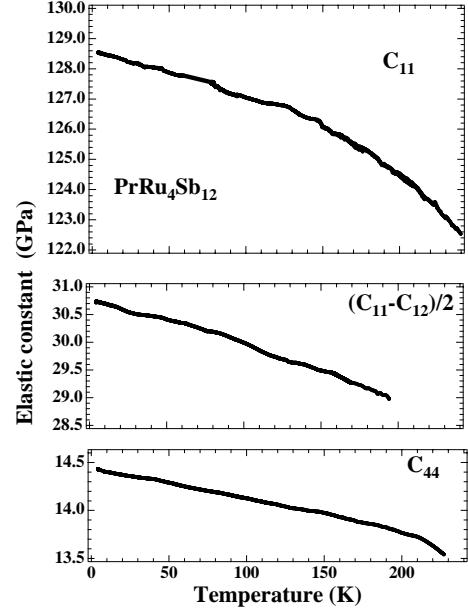


Fig. 2. Temperature dependence of elastic constants C_{11} , $(C_{11}-C_{12})/2$ and C_{44} for PrRu₄Sb₁₂.

elastic softening is expected in $(C_{11}-C_{12})/2$. Present result strongly supports Γ_1 singlet as ground state in Pr Ru₄Sb₁₂ which was proposed by Takeda *et al* [3]. However, no information gives us concerning the high-lying 4f state in present study. The superconducting transition hardly influences the elastic constants in La Ru₄Sb₁₂. This result was also found in La Fe₄P₁₂.[5] This might be a common behavior in these material groups.

As a summary, we reported the elastic properties of the filled skutterudite compounds LaRu₄Sb₁₂ and PrRu₄Sb₁₂ by means of ultrasonic measurement. From present results we obtain the following conclusions. For LaRu₄Sb₁₂, all measured elastic constants increase monotonically with decreasing temperatures. No distinct anomaly was observed at T_c in LaRu₄Sb₁₂. For PrRu₄Sb₁₂, all measured elastic constants increase monotonically with decreasing temperatures. No elastic softening towards low temperatures was observed, indicating that the ground state of 4f-multiplet is Γ_1 singlet, not Γ_3 non-Kramers doublet. The lower temperature condition is needed to investigate the elastic properties around $T_c = 1.0$ K in PrRu₄Sb₁₂.

This study was financially supported in part by the Grant-in-Aid for Scientific Research from the Ministry of Education, Sport, Science and Culture of Japan.

References

- [1] N. Takeda *et al.*; Physica B **259-261** (1999) 92.
- [2] N. Takeda *et al.*; Physica B **281-282** (2000) 388.

- [3] N. Takeda *et al.*; J. Phys. Soc. Jpn. **69** (2000) 868.
- [4] Y. Nakanishi *et al.*; J. Phys. Soc. Jpn. (suppl.) **69** (2001) 868.
- [5] Y. Nakanishi *et al.*; (unpublished)