

Electronic properties of the novel 4d metallic oxide SrRhO_3

K. Yamaura^{a,1}, Q. Huang^{b,c}, D.P. Young^d, M. Arai^e, E. Takayama-Muromachi^a

^a*Superconducting Materials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan*

^b*NIST Center for Neutron Research, 100 Bureau Dr., Gaithersburg, MD 20899, USA*

^c*Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742, USA*

^d*Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA*

^e*Computational Materials Science Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan*

Abstract

The novel 4d perovskite compound SrRhO_3 was investigated by isovalent doping studies. Substitution of Ca and Ba onto Sr-site was below 80% and 20%, respectively. Although SrRhO_3 was chemically compressed, approximately 5.7% by the Ca doping, no significant influence was observed on the magnetic and electrical properties.

Key words: SrRhO_3 ; rhodium oxides; high pressure; perovskite; Ruddlesden-Popper

Novel 4d electronic compounds in the rhodium-oxide system with perovskite- and Ruddlesden-Popper-type structures were found recently, followed by intensive experimental investigations [1–3]. An essential chemical reaction in synthesis of the compounds was provoked by a high-pressure and high-temperature heating (6 GPa and 1500 °C) in our originally developed apparatus [1]. The structure characteristics of the compounds were studied by means of powder neutron and x-ray diffraction [1,2]; The structural data clearly indicate them to be isostructural to the analogous ruthenium oxides with approximately the same degree of local structural distortions. The perovskite SrRhO_3 is metallic with enhanced paramagnetism as is the analogous ruthenium oxide CaRuO_3 [4]. A comprehensive picture, however, for the magnetic and transport properties has not been fully established yet. The quadratic temperature dependence, for example, of the magnetic susceptibility data of SrRhO_3 is unexpected, and it does not follow, even qualitatively, the models of conventional paramagnetism or self-consistent-renormalization [1].

¹ E-mail:YAMAURA.Kazunari@nims.go.jp, Fax.:+81-298-58-5650

In this short paper, we report the data of isovalent substitution studies on the perovskite SrRhO_3 . The Ca substitution was achieved onto the Sr site up to approximately 80%, resulting in 5.7% compression in unit-cell volume.

Variable composition precursors $\text{Sr}_{1-x}\text{Ca}_x\text{RhO}_3$ ($x = 0$ to 1 in 0.2 steps) were prepared from SrCO_3 (99.9 %), CaCO_3 (99.9 %) and Rh (99.9 %) powders. Mixtures were heated at 1200 °C for 48 hrs in oxygen after a couple of pre-heatings. Each of those (~ 0.3 g) was then mixed with KClO_4 (8 wt.%), and placed into Pt capsules. The capsules were compressed at 6 GPa and heated at 1500 °C for 1 hr, followed by quenching to room temperature at the elevated pressure. Quality of the final products was examined by powder x-ray diffraction in a regular manner. The magnetic susceptibility of the selected samples was measured in a commercial apparatus (Quantum Design, MPMS-XL). The electrical resistivity was measured by a conventional dc-four-terminal technique.

It appeared that the Ca doped samples ($x = 0.2$ –0.6) were of high-quality as well as pure SrRhO_3 [1]. At $x = 0.8$, a small fraction of an unknown phase was detected, indicating a limit on the Ca solubility. At the Ca-end ($x = 1.0$), the sample consisted of multi-

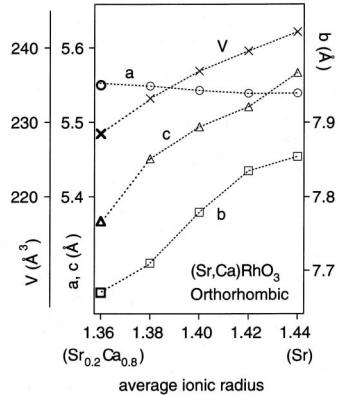


Fig. 1. Lattice parameters of the orthorhombic perovskite $(\text{Sr,Ca})\text{RhO}_3$. Set of the fat makers ($x = 0.8$) is slightly out of solid-solution range.

ple phases, which were unidentified. The various lattice parameters and the unit-cell volumes measured in the x-ray study are arranged in Fig.1. They decrease smoothly with increasing Ca concentration, consistent with Ca having a smaller ionic radius than Sr. The perovskite SrRhO_3 was chemically compressed $\sim 5.7\%$ by the Ca substitution.

The temperature dependence of the electrical resistivity of the sample pellets were measured between 2 K and 380 K. Metallic behavior was observed for the samples between $x = 0$ and 0.8 in the temperature range. Although the data were probably influenced somewhat by polycrystalline nature of the samples, the essential electrical characteristics should be metallic over the whole solid-solution.

The Ca concentration dependence of the magnetic properties was studied at 50 kOe between 2 K and 380 K. The magnetic susceptibility data could not be well fit to a typical Curie-Weiss type expression ($1/\chi \sim T$). However, a linear region in the data is observed when plotted as $1/\chi$ vs T^2 as shown in Fig.2. To a first approximation, there is no change in slope of the linear part of the data with increasing Ca concentration, rather generally a rigid shift to higher values of $1/\chi$. Neither antiferromagnetic nor ferromagnetic order was observed, and therefore, the data do not provide sufficient evidence to determine the dominant influence on the rather unusual magnetic character ($1/\chi \sim T^2$) in the metallic state.

The Ca-doping shifts the system away from a long-range magnetically ordered state, as the intersection between the horizontal axis and the extrapolated linear fit (Fig.2) moves away from the origin with increasing Ca concentration. Long-range order is expected to appear when the point intersects the origin, as found in the solid solution of the Ru analogue, $(\text{Ca},\text{Sr})\text{RuO}_3$ [4]. We were then motivated to try Ba-doping in the perovskite, essentially a study in negative compression

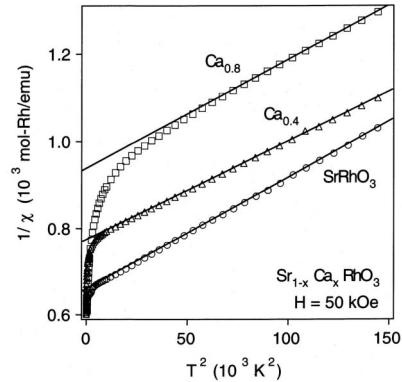


Fig. 2. The inverse magnetic susceptibility vs temperature squared at 50 kOe for the polycrystalline samples of $(\text{Sr,Ca})\text{RhO}_3$. The plots show a notably linear dependence as the solid lines indicate. Contribution from the sample holder was negligible. The Curie-Weiss law ($1/\chi \sim T$) was unable to fit the magnetic data.

(Ba has a larger ionic size than Sr). The amount of Ba substituted was, however, too insignificant to test the expectation. The orthorhombic structure quickly transformed to a hexagonal type with increasing Ba concentration [5]; the Ba-solubility limit was less than 20 % at the synthesis conditions.

In summary, we reviewed investigations of the isovalent doping studies on SrRhO_3 . The data indicate no remarkable change in the magnetic and electrical properties of SrRhO_3 , either qualitatively or quantitatively; the rather unusual magnetic character, quadratic temperature dependence of the magnetic susceptibility ($1/\chi \sim T^2$) was robust against the 5.7% chemical compression. Hence, the open question still remains as to what mechanism is responsible for the magnetic characteristics. Further investigations, including testing aliovalent doping effects on SrRhO_3 , would be of interest.

We wish to thank Dr. M. Akaishi (NIMS) and Dr. S. Yamaoka (NIMS) for their advice on the high-pressure experiments.

References

- [1] K. Yamaura, E. Takayama-Muromachi, Phys. Rev. B **64** (2001) 224424.
- [2] K. Yamaura, Q. Huang, D.P. Young, Y. Noguchi, E. Takayama-Muromachi, Phys. Rev. B (submitted).
- [3] K. Yamaura, D. P. Young, and E. Takayama-Muromachi, in the 2002 MRS Spring Meeting, San Francisco, California (in press).
- [4] K. Yoshimura, T. Imai, T. Kiyama, K.R. Thurber, A.W. Hunt, K. Kosuge, Phys. Rev. Lett. **83** (1999) 4397.
- [5] B.L. Chamberland, J.B. Anderson, J. Solid State Chem. **39** (1981) 114.