

Field-induced ferromagnetic transition in PrInNi_4

Naohito Tsujii¹ Hideaki Kitazawa, Hiroyuki Suzuki, Giyuu Kido, Motoharu Imai

National Institute for Materials Science, Tsukuba 305-0047, Ibaraki, Japan

Abstract

Magnetic and electrical properties of new ternary compounds $R\text{InNi}_4$ with $R = \text{Ce, Pr and Tm}$ have been investigated. The magnetic susceptibility χ and the electrical resistivity ρ show the absence of magnetic order in these systems down to 2 K at low fields. χ of CeInNi_4 indicates that the Ce ion is close to Ce^{4+} state. For PrInNi_4 , while χ at the field of $H = 0.1$ T shows a characteristic behavior of a nonmagnetic ground state due to a crystal field splitting, the magnetization M for $H \geq 0.75$ T reveals the presence of a ferromagnetic transition at $T_c \sim 3$ K. Moreover, the M vs. H for $T \leq 4$ K exhibits a metamagnetic transition at $H_c \sim 1$ T. It is suggested that a significant mixing of the crystal field levels is relevant to the field-induced transition in PrInNi_4 .

Key words: ferromagnetic transition ; nonmagnetic ground state ; metamagnetic transition

Rare-earth intermetallics with the cubic MgSnCu_4 -type structure show a variety of interesting magnetic properties, including the valence-transition in YbInCu_4 [1,2] and the antiferromagnetic phase with a partially-disordered magnetic structure in GdInCu_4 [3]. The series $R\text{InNi}_4$ (R = rare earth) has been relatively unstudied, and only recently it has been reported that YbInNi_4 orders ferromagnetically with a reduced spontaneous moments [4]. The compounds with Ce, Pr and Tm ions are also expected to show interesting phenomena from the viewpoint of mixed-valence or quadrupolar effect. In this paper, we report the magnetization and resistivity of $R\text{InNi}_4$ with $R = \text{Ce, Pr and Tm}$.

Polycrystalline samples of $R\text{InNi}_4$ ($R = \text{Ce, Pr and Tm}$) were prepared by the same procedure described in ref. [5]. X-ray diffraction reveals that all the three systems crystallize in the MgSnCu_4 -type structure. The lattice constants were determined to be $a = 7.076$, 7.144, and 6.996 Å for $R = \text{Ce, Pr and Tm}$, respectively.

Figure 1 shows the magnetic susceptibility χ of $R\text{InNi}_4$ as functions of temperature T . For all the three systems, no evidence of magnetic order is observed. χ

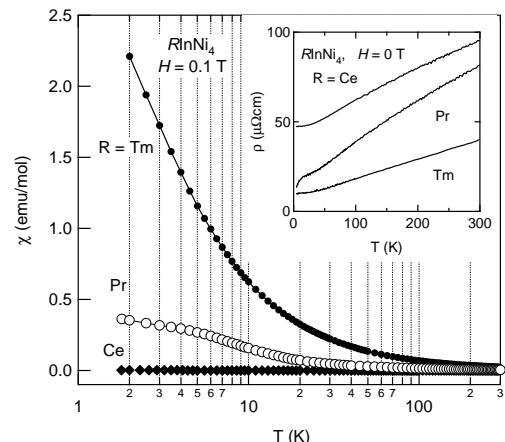


Fig. 1. Temperature dependence of the magnetic susceptibility of $R\text{InNi}_4$ with $R = \text{Ce, Pr and Tm}$ at 0.1 T. Inset shows temperature dependence of the electrical resistivity measured at zero fields.

of PrInNi_4 and TmInNi_4 show Curie-Weiss behavior, and the effective magnetic moments are consistent with those expected for Pr^{3+} and Tm^{3+} ions. On the other hand, χ of CeInNi_4 is almost independent of T and shows small values less than 1×10^{-3} emu/mol.

¹ Corresponding author, E-mail: TSUJII.Naohito@nims.go.jp

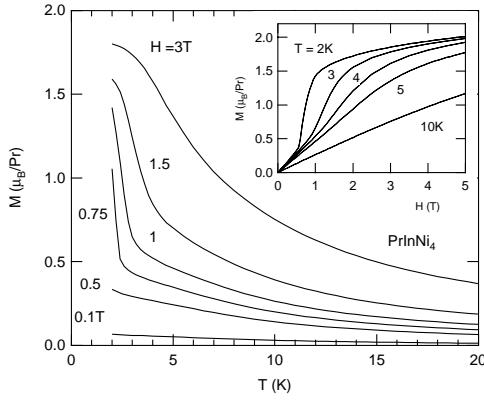


Fig. 2. Temperature dependence of the magnetization of PrInNi_4 measured at the applied fields of $H = 0.1, 0.5, 0.75, 1, 1.5$ and 3 T . Inset shows field dependence of the magnetization measured at the temperatures of $T = 2, 3, 4, 5$, and 10 K .

This indicates that the Ce ion is close to Ce^{4+} , consistent with the significantly smaller lattice constant of CeInNi_4 than that of PrInNi_4 . For PrInNi_4 , χ shows a saturation behavior below 10 K . This is characteristic of a nonmagnetic ground state due to a crystal-field (CF) splitting with an excited level approximately $10\text{-}20 \text{ K}$ above the ground state [5].

The inset of Fig. 1 shows the electrical resistivity ρ as functions of T . ρ of CeInNi_4 and TmInNi_4 show no anomaly. For PrInNi_4 , ρ shows a downturn below about 20 K . This is attributed to the CF splitting, consistent with the χ - T data.

Figure 2 shows the magnetization M of PrInNi_4 as functions of T . M for $H = 0.1$ and 0.5 T show no evidence of magnetic ordering. For $H = 0.75 \text{ T}$, one finds an abrupt increase in M at 3 K , indicating a ferromagnetic transition at $T_c \sim 3 \text{ K}$. For $H \geq 1 \text{ T}$, T_c shifts to higher T with increasing H . Magnetic moments at low T are close to $2 \mu_B$. Such a large moments cannot be explained by the Van-Vleck contribution. We therefore propose that a significant mixing of the CF levels occurs due to ferromagnetic interaction. This is also suggested by the calculation based on the CF effect and ferromagnetic interaction [6].

The inset of Fig. 2 shows M of PrInNi_4 as functions of H measured at various T . For $T = 2 \text{ K}$, a metamagnetic transition is seen at $H_c = 0.65 \text{ T}$. This is attributed to a nonmagnetic-ferromagnetic (N-F) transition. It should be noted that N-F transitions by field have been only observed in limited systems such as itinerant electron systems like YCo_2 or $\text{Co}(\text{S},\text{Se})_2$ [7], and the localized moment system CsFeCl_3 [8]. PrInNi_4 is therefore a rare example of a localized moment system with a N-F transition induced by field. This unusual transition may be a result of a competition of the CF splitting and ferromagnetic interaction.

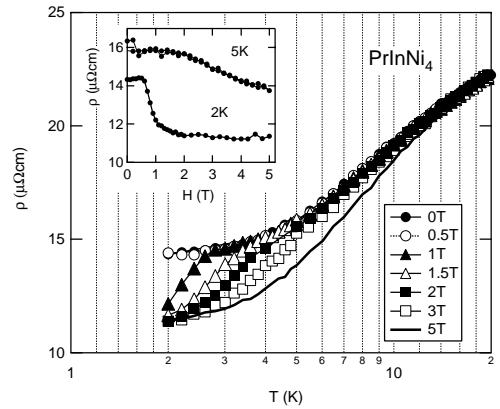


Fig. 3. Temperature dependence of the electrical resistivity of PrInNi_4 measured at fixed fields. Inset shows field dependence of the resistivity at 2 K and 5 K .

Figure 3 shows ρ vs. T for PrInNi_4 measured at various H . For $H \leq 0.5 \text{ T}$, ρ shows no anomaly, suggesting the absence of magnetic ordering. For $H \geq 1 \text{ T}$, ρ drops at around T_c . This provides the evidence that the magnetic ordered state evolves only under magnetic fields.

It is notable that in Fig. 3, ρ above T_c is not largely affected by H . This suggests that the mixing of the CF levels develops rapidly around T_c . This is supported by the ρ vs. H curve, shown in the inset of Fig. 3. For 2 K , ρ drops abruptly at $H = 0.7 \text{ T}$ due to the N-F transition. Notably, ρ is almost flat for $H < 0.5 \text{ T}$ and $H > 1 \text{ T}$, suggesting an abrupt change of the electronic state by the mixing of the CF levels. On the other hand, ρ at 5 K decreases linearly with increasing H , indicating a gradual mixing of the CF levels.

Finally, we note the result of a preliminary specific heat measurement, which indicates that the lowest CF level in PrInNi_4 is the nonmagnetic doublet Γ_3 . Since the Γ_3 state has a quadrupolar moment, the correlation of the N-F transition and the quadrupolar moment is of interest, and is to be studied.

References

- [1] I. Felner, I. Nowik, Phys. Rev. B **33** (1986) 617.
- [2] K. Yoshimura *et al.*, Phys. Rev. Lett. **60** (1988) 851.
- [3] H. Nakamura *et al.*, J. Phys.: Condens. Matt. **11** (1999) 1095.
- [4] J.L. Sarrao *et al.*, Phys. Rev. B **57** (1998) 7785.
- [5] N. Tsujii *et al.*, J. Phys. Soc. Jpn. **71** (2002), in press.
- [6] H. Suzuki *et al.*, submitted to SCES 2002.
- [7] T. Goto *et al.*, Physica B **300** (2001) 167.
- [8] M. Chiba *et al.*, Physica B **284-288** (2000) 1529.