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Abstract

An energy-scale dependent approach, developed within the framework of the Composite Operator Method (COM),
for the Hubbard model is proposed. The dynamics is derived from the equations of motion of fermionic composite
operators whose high- and low- energy components are treated separately. A fully self-consistent solution which
exactly conserves the first spectral moments is found.
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The main problem we have to face in describing
highly correlated systems is to establish a connection
between the high and low scales of energy. The very
strong interactions present in these systems generate
composite fields with a quite complex dynamics. Meth-
ods based on the use of the equations of motion and
of the spectral moment conservation usually give a
rather reliable description of the high-energy features,
but do not reproduce the low-energy physics accu-
rately enough. The choice of an effective expansion ba-
sis is the real problem. Recently, a new efficient ap-
proach was developed [1], within the framework of the
COM, for the investigation of the Kondo and the An-
derson models which has permitted to resolve their
low-frequency features correctly. The central idea of
this approach is to pick up and split the relevant com-
posite fields in two components describing the dynam-
ics at low and high energy, respectively. In the present
manuscript we report a proposal regarding the appli-
cation of this method to the single-band d-dimensional
Hubbard model:

H =
�

�,�

(t�� − µδ�� )c†(i)c(j) + U
�

�

n↑(i)n↓(i), (1)
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Via S. Allende, I-84081 Baronissi (SA), Italy; E-mail:

avella@sa.infn.it; FAX: +39 089 965275

where c(i) is the annihilation electron operator in
spinorial notation, nσ(i) = c†σ(i)cσ(i), i = (�, t), � is
a lattice vector, µ is the chemical potential, t�� =

−2dtα�� , α�� is the projector on the nearest neighbor

sites. c(i) satisfies the Heisenberg equation

i
∂

∂t
c(i) = −µc(i) − 2dtcα(i) + Uη(i), (2)

where cα(�, t) =
�

� α��c(�, t) and η(i) = n(i)c(i).

This latter field satisfies the following equation of mo-
tion

i
∂

∂t
η(i) = −(µ − U)η(i) + 2dtπ(i), (3)

where π(i) = σµnµc
α(i)/2 + cα†(i)c(i)c(i) , nµ(i) =

c†(i)σµc(i) is the charge (µ = 0) and spin (µ = 1, 2, 3)
density operator, σµ = (−1, σ) and σµ = (1, σ), σ are
the Pauli matrices.

Let us introduce the basic composite field

ψ†(i) = (c†(i), η†(i)) = (ψ†
1(i), ψ

†
2(i)), (4)

and consider the thermal retarded Green’s function
G(i, j) =

�R �
ψ(i)ψ†(j)

��
. After Eqs. (2) and (3) we

have in the reciprocal space

[ω − ε(�)]G1ν(�, ω) = I1ν(�) + UG2ν(�, ω), (5)

where ν = 1, 2, ε(�) = −µ − 2dtα(�) with α(�) =

F
�
α��

�
and I(�) = F ���

ψ(�, t),ψ†(�, t)
	��

is the

normalization matrix. F is the Fourier transform.
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In the paramagnetic state we have I11(�) = 1 and
I12(�) = I21(�) = I22(�) = n/2, where n is the
electron density.

Finally, we only need to compute the propagator
G22(�, ω) in Eq. (5). Without loss of generality we can
always decompose the field ψ2 into its high (ψH

2 ) and
low (ψL

2 ) energy components ψ2(i) = ψH
2 (i) + ψL

2 (i)
where ψL

2 (i) satisfies the following dynamics

i
∂

∂t
ψL

2 (�, t) = γL(�)ψ1(�, t). (6)

According to this decomposition, we have the following
representation of the propagators

G12(�, ω) =
�

a

Ga
12(�, ω)

G22(�, ω) =
�
ab

Gab
22(�, ω) (7)

where a, b = L, H and

Ga
12(�, ω) = F



R
�
ψ1(i)ψ

a†
2 (j)

��
,

Gab
22(�, ω) = F



R
�
ψa

2 (i)ψb†
2 (j)

��
. (8)

By means of Eqs. (5-8), we can express all Green’s
functions through GHH

22 (�, ω) and the four parameters
IH
12, I

L
12, I

LH
22 , ILL

22 where

Ia
12(�) = F

�
�
ψ1(�, t), ψ

a†
2 (�, t)


��

Iab
22 (�) = F

�
�
ψa

2 (�, t), ψb†
2 (�, t)


��
(9)

To determine GHH
22 (�, ω) we will set an equation of

motion for ψH
2 (i). In the high energy limitwe can safely

project Eq. (3) on the basis (4) and obtain:

i
∂

∂t
ψH

2 (�) = a1(�)ψ1(�) + a2(�)ψH
2 (�) (10)

where a1(�) = 2dt [∆ + α(�) (p − I22)] / (1 − I22)
and a2(�) = −a1(�)/I22 + ε(�) + U with ∆ =�
cα(i)c†(i)

�− 2
�
cα(i)η†(i)

�
and p = 1

4

�
nα

µ(i)nµ(i)
�−


[c↑(i)c↓(i)]α c†↓(i)c
†
↑(i)

�
.

By means of the Eq. (10) we obtain the following
relation

[ω − a2(�)]GHH
22 (�, ω) = IHH

22 (�) + a1(�)GH
12(�, ω)

(11)
which permits to close the system of linear equations
for the Green’s functions and get

G11(�, ω) =
σ

(0)
11 (�)

ω − ε(�) + iδ
+

5�
n=1

σ
(n)
11 (�)

ω −En(�) + iδ

(12)
where En(�) are the poles of the following equa-
tions: ω3 + M2(�)ω2 + M1(�)ω + M0(�) = 0 and
ω2 − ε(�)ω − UγL(�) = 0 where M2(�) = −a2(�) −

ε(�), M1(�) = −ε(�)a2(�) − U(γL(�) + a1(�)) and
M0(�) = UγL(�)a2(�). For the sake of brevity, the
expressions of the spectral weights will be given else-
where. It is worth noticing that this solution conserves
exactly the first three spectral moments for both fields
in the basis.

The Green’s functions depend on the following sets of
parameters: (i) external: U , T , n ; (ii) internal: Ia

12(�),
Iab
22 (�), γL(�); (iii) internal: µ, ∆, p. We fix the pa-

rameters (iii) by means of the following set of the self-
consistent equations:

n = 2(1 −C11)

∆ = Cα
11 − 2Cα

12 (13)

C12 = C22

where C =
�
ψ(i)ψ†(i)

�
and Cα =

�
ψα(i)ψ†(i)

�
are

correlation functions. The first two equations are dic-
tated by the definitions of the parameters, the third by
the Pauli principle and they are all necessary in order
to fix the representation of the Green’s functions [2].

Exploiting the time-translation invariance of the
normalization matrix and the relations among the
high- and low- energy components of its entries we get:

IL
12(�) = I22 − IH

12(�),

γL(�) = −a1(�) + b(�),

ILH
22 (�) =

�
−a1(�)I22 + IH

12(�)b(�)
�
/a2(�), (14)

ILL
22 (�) = d(�) + I22 − 2a1(�)/U − g(�),

IHH
22 (�) = d(�) + g(�),

where b(�) = I22 [ε(�) + U ] − a2(�)IH
12(�), d(�) =

a1(�) [I22/a2(�) + 1/U ] and g(�) = IH
12(�) [(a2(�)

−ε(�)) /U − b(�)/a2(�)]. As a result, Eqs. (14) es-
tablish the dependence of all the other parameters (ii)
on IH

12(�). The last self-consistent equation, the one
setting IH

12(�) = a1(�)/a2(�), can be obtained from
the requirement that the Green’s function G11(�, ω)
does not have a pole at ω = ε(�) (i.e., by setting

σ
(0)
11 (�) = 0).
In conclusion, we have proposed a fully self-

consistent formulation, derived from the COM and
positively tested on impurity systems [1], to study
the coexistence of high- and low- energy scales in the
d-dimensional Hubbard model. The computational
implementation is still in progress.
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