Two-scale analysis of the Hubbard model
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Abstract

An energy-scale dependent approach, developed within the framework of the Composite Operator Method (COM),
for the Hubbard model is proposed. The dynamics is derived from the equations of motion of fermionic composite
operators whose high- and low- energy components are treated separately. A fully self-consistent solution which

exactly conserves the first spectral moments is found.
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The main problem we have to face in describing
highly correlated systems is to establish a connection
between the high and low scales of energy. The very
strong interactions present in these systems generate
composite fields with a quite complex dynamics. Meth-
ods based on the use of the equations of motion and
of the spectral moment conservation usually give a
rather reliable description of the high-energy features,
but do not reproduce the low-energy physics accu-
rately enough. The choice of an effective expansion ba-
sis is the real problem. Recently, a new efficient ap-
proach was developed [1], within the framework of the
COM, for the investigation of the Kondo and the An-
derson models which has permitted to resolve their
low-frequency features correctly. The central idea of
this approach is to pick up and split the relevant com-
posite fields in two components describing the dynam-
ics at low and high energy, respectively. In the present
manuscript we report a proposal regarding the appli-
cation of this method to the single-band d-dimensional
Hubbard model:
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where (i) is the annihilation electron operator in
spinorial notation, n, (i) = ¢\ (i)co (i), i = (4,t), 4 is
a lattice vector, p is the chemical potential, tij =
—2dtaij, ;4 is the projector on the nearest neighbor
sites. c(i) satisfies the Heisenberg equation

i%c(i) = —pc(i) — 2dtc® (i) + Un(i), (2)

where ¢®(i,t) = ZJ ozijc(j, t) and n(z) = n(i)c(i).
This latter field satisfies the following equation of mo-
tion

D) = (e V) + 2dim(s), (3)

where 7(i) = otn,c*(1)/2 + ¢*T(1)c(i)c(i) , nu(i) =
cf(i)o,c(i) is the charge (1 = 0) and spin (= 1,2,3)
density operator, o* = (—=1,0) and ¢, = (1,0), o are
the Pauli matrices.

Let us introduce the basic composite field

G0 = (M (D),0" (D) = (W160),v3(0),  (4)

and consider the thermal retarded Green’s function

G(i,j) = (R [w(@)u! (j)]). After Egs. (2) and (3) we
have in the reciprocal space

[w— e(k)] G1o (k,w) = L1, (k) + UGay (k,w),  (5)
where v = 1, 2, e(k) = —u — 2dta(k) with a(k) =
f[%‘] and I(k) = F [({y(i,t),07(4,0)})] is the

normalization matrix. F is the Fourier transform.

22 June 2002



In the paramagnetic state we have I11(k) = 1 and
[12(k) = Igl(k) = Igz(k) = TI,/Q, where n is the
electron density.

Finally, we only need to compute the propagator
Ga2(k,w) in Eq. (5). Without loss of generality we can
always decompose the field v» into its high (1/5') and

low (wg) energy components (i) = i (i) + ¥ (i)
where 1 (i) satisfies the following dynamics

2k () = 7 () (O, ), ©)

According to this decomposition, we have the following
representation of the propagators

Gra (ke Z Gt

Gaa(k Z G55 (7)

where a,b = L, H and

(R [e:1)us'G)])

(R [ws05'G)])- (8)

By means of Egs. (5-8), we can express all Green’s

functions through G257 (k,w) and the four parameters

I, Iy, 17 I35 where

)

153k) = F ({360,046, 0) }))] (9)
LH (k,w) we will set an equation of

To determine G&,
motion for 13! (7). In the high energy limit we can safely
project Eq. (3) on the basis (4) and obtain:

?2(’@7(&1) = .7:

G35 (k,w)=F

P35 (k) = a1 (k) (k) + az(k)ys (k) (10)

where a1(k) = 2dt [A+a(k) (p—]gz)]/(l —]22)
and ag( ) —a1(k)/122 =+ 6(k) + U with A =
(™ (@' (@) = 2(c™(D)n' (3)) and p = § (nj (1), (i) —
(le1@)es @) el (i)e] (0))-

By means of the Eq. (10) we obtain the following
relation

[w— as (k)] G5 (k,w) = I (k) + a1 (k)G1a(k, w)
(11)
which permits to close the system of linear equations
for the Green’s functions and get

yo o) = ol (k)
w—e(k)+id = w— En(k)+ié
(12)
where FE,(k) are the poles of the following equa-
tions: w?® + My (k)w? + Mi(k)w + Mo(k) = 0 and
w? — e(k)w — Uy (k) = 0 where M (k) = —as(k) —

Gu(k,w

e(k), Mi(k) = —e(k)az(k) — U(yr(k) 4 ai(k)) and
My(k) = U~vr(k)az(k). For the sake of brevity, the
expressions of the spectral weights will be given else-
where. It is worth noticing that this solution conserves
exactly the first three spectral moments for both fields
in the basis.

The Green’s functions depend on the following sets of
parameters: (i) external: U, T, n ; (ii) internal: Iy (k),
I82(k), vyr.(k); (iil) internal: u, A, p. We fix the pa-
rameters (iii) by means of the following set of the self-
consistent equations:

n = 2(1 — C11)
A =CP —207 (13)
Ciy = Cyy

where C' = (¢(i)1(i)) and C* = (p*(i)y!(i)) are
correlation functions. The first two equations are dic-
tated by the definitions of the parameters, the third by
the Pauli principle and they are all necessary in order
to fix the representation of the Green’s functions [2].
Exploiting the time-translation invariance of the
normalization matrix and the relations among the
high- and low- energy components of its entries we get:

[12(k) _Ig(k),
YL (k) = —ar(k) + b(k),
1 (k) = [~a1 (k) Loz + I3 (R)E(R)| Jax(R),  (14)

I35° (k) = d(k) + In2 — 2a1 (k) /U — g(k),
135" (k) = d(k) + g(k),

where b(k) = Iz [e(k)+ U] — az(k)llg(k) d(k) =
ar (k) [I22/az(k) + 1/U] and g(k) = Ii3(k) [(a2(k)
—e(k)) /U — b(k)/az2(k)]. As a result, Egs. (14) es-
tablish the dependence of all the other parameters (ii)
on I (k). The last self-consistent equation, the one
setting I{5(k) = ai(k)/az(k), can be obtained from
the requirement that the Green’s function Gi1(k,w)
does not have a pole at w = e(k) (i.e., by setting
o1 (k) = 0).

In conclusion, we have proposed a fully self-
consistent formulation, derived from the COM and
positively tested on impurity systems [1], to study
the coexistence of high- and low- energy scales in the
d-dimensional Hubbard model. The computational
implementation is still in progress.
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